H	all Ticket	No	Question Paper Code: AHS003
EDUC		NSTITUTE OF AERONAUTICAL EN (Autonomous)	GINEERING
	PHON FOR LIBERT	B.Tech I Semester End Examinations (Supplementary) Regulation: IARE-R16	- January, 2017
	COM	PUTATIONAL MATHEMATICS AND INTE (Common for CSE/IT/ECE/EE	

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1. (a) Solve the equation $x \tan x = -1$ by Regulafalsi method between 2.5 and 3. Correct the root to 3 decimals.

[7M]

(b) Using suitable central difference formula, find f(35) for the following data

х	20	30	40	50	60
f(x)	512	439	346	243	140

- 2. (a) Using Regula Falsi method, find a real root of the equation, $xe^x = Cosx$ that lies between 0.4 and 0.6 (x in radians).Correct the root to three decimals. [7M]
 - (b) Certain corresponding values of x and $\log_{10} x$ are given below. (300, 2.4771), (304, 2.4829), (305,2.4843)and (307, 2.4871). Find $\log_{10} (301)$ using Lagrange's interpolation.

$\mathbf{UNIT}-\mathbf{II}$

3. (a) Fit a law of the form $V = a + \left(\frac{b}{A}\right)$ for the following data and hence compute V when a=12.

[7M]

V	50	47	46	45	44
А	2	3	4	6	10

(b) Solve
$$y' = 2y + 3e^x$$
, $y(0) = 0$ To find $y(0.1), y(0.2)$ by Taylor Series method. [7M]

4. (a) At a Constant temperature Pressure(P) and a Volume(V) of a gas are corrected by the Relation $PV^{\gamma} = \text{constant}$. Find the best fitting equation of this form to the following data and estimate V where P = 4 [7M]

Р	0.5	1.0	1.5	2.0	2.5	3.0
V	1620	1000	750	620	520	460

(b) Using Modified Euler's method, solve $y' = \log(x+y)$, y(1) = 2 at x = 1.2 & 1.4 [7M]

UNIT - III

5. (a) Evaluate $\int_{R}^{\pi/2} \int_{R}^{y} y \, dx \, dy$ where R is the region enclosed by the parabola $x^2 = y$ and the line y = x + 2 [7M]

(b) Evaluate
$$\int_{0}^{\pi^{2}} \int_{0}^{a \sin \theta} \int_{0}^{\frac{a^{2} - r^{2}}{a}} r dr d\theta dz$$
 [7M]

6. (a) Find the area bounded by the curves xy = 2, $4y = x^2$ and the line y=4. [7M]

(b) Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}\sqrt{1-x^2-y^2}} xyz \, dy \, dy \, dx$$
 [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Find the constants 'a' and 'b' so that $\vec{f} = (axy + z^3)i + (3x^2 z)j + (bxz^2 y)k$ is irrotational and find ϕ such that $\vec{f} = \nabla \phi$ [7M]
 - (b) Verify Green's theorem for $\int_{c} (3x^2 8y^2) dx + (4y 6xy) dy$ where 'C' is the boundary of the region by the curves $y = \sqrt{x}$ and $y = x^2$. [7M]
- 8. (a) Using divergence theorem evaluate $\iint_{S} \vec{F} \cdot \hat{n} \, ds$, where $\vec{F} = 4x \, \hat{i} 2y^2 \, \hat{j} + z^2 \, \hat{k}$ and is the surface enclosed by $x^2 + y^2 = 4$, z = 0 and z = 3. [7M]
 - (b) Using Stokes theorem evaluate $\int_C (\sin z \, dx \cos x \, dy + \sin y \, dz)$, where C is the boundary of the rectangle $0 \le x \le \pi$, $0 \le y \le 1$, z = 3

[7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Using generating functions for $J_n(x)$, prove the following Jacobi series [7M] i. $\cos(x \sin \theta) = J_0 + 2J_2 \cos 2\theta + 4J_4 \cos 4\theta + \dots$ ii. $\sin(x \sin \theta) = 2J_1 \sin \theta + 2J_3 \sin 3\theta + 2J_5 \sin 5\theta$
 - (b) Show that $\int_{0}^{\infty} \sqrt{y} \cdot e^{-y^2} dy \cdot \int_{0}^{\infty} \frac{e^{-y^2}}{\sqrt{y}} dy = \frac{\pi}{2\sqrt{2}}$

10. (a) Prove that
$$2nJ_n(x) = x \{J_{n+1}(x) + J_{n-1}(x)\}$$
 [7M]

(b) Use Frobenius method to solve 2x(1-x)y'' + (1-x)y' + 3y = 0 [7M]