Hall Ticket No						Question Paper Code: AHS003

(Autonomous)

B.Tech I/II Semester Supplementary Examinations - July, 2017 **Regulation: IA-R16**

COMPUTATIONAL MATHEMATICS AND INTEGRAL CALCULUS

[Common for : I Semester (CSE, IT, ECE and EEE) | II Semester (AE, CE and ME)]

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- 1. (a) Use the method of false position to find the forth root of 32 correct to three decimal places. [7M]
 - (b) By using Newton's forward interpolation formula, find the cubic polynomial which takes the following values. [7M]

X	0	1	2	3
Y	1	2	1	10

- 2. (a) Evaluate a real root of $\cos x + 1 = 3x$ by using Newton Raphson's method. [7M]
 - (b) A curve passes through the point (0,18),(1,10),(3,18) and (6,90). Find the slope of the curve at x=2.[7M]

 $\mathbf{UNIT} - \mathbf{II}$

- 3. (a) Using Taylor series method, find the approximate value of y at x=0.2 for the differential equation $y' = 2y + 3e^x, \ y(0) = 0.$ [7M]
 - (b) Apply the method of least squares find the straight line that best fits the following data. [7M]

X	1	2	3	4	5
Y	14	27	40	55	68

4. (a) Fit a curve of the form $y = a + bx^2$ by the method of least squares for the following data: [7M]

Х	1	2.5	3.5	4
Y	3.8	15	26	33

(b) Find y(0.1) and y(0.2) by Runge–Kutta method of fourth order for the equation, $y' = xy + y^2$, y(0)=1.[7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) By changing the order of integration evaluate $\int_{0}^{1} \int_{0}^{\sqrt{(1-x^2)}} y^2 dy dx.$ [7M]
 - (b) Using triple integration find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$ [7M]
- 6. (a) By changing order of integration evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2}+y^{2}} dx dy = \frac{\pi a}{4}.$ [7M]
 - (b) Using double integration, compute the area common to $x^2+y^2-4y=0$ and $x^2+y^2-4x-4y+4=0$. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Find divergence and curl of $\vec{f} = grad(x^3 + y^3 + z^3 3xyz)$. [7M]
 - (b) Evaluate $\iint_{s} \vec{f} \cdot \hat{n} \, ds$ where $\vec{f} = i j + xyzk$ and S is the circular region bounded by cutting the sphere $x^{2} + y^{2} + z^{2} = a^{2}$ with the plane y=x.

[7M]

- 8. (a) Prove that if \vec{r} is a position vector of any point in space then $r^n \vec{r}$ is irrotational. [7M]
 - (b) Evaluate by Green's theorem $\oint (y \sin x) dx + (\cos x) dy$ where C is the triangle enclosed by the lines y = 0, $x = \frac{\pi}{2}$, $\pi y = 2x$. [7M]

$\mathbf{UNIT} - \mathbf{V}$

- i. $\Gamma(n+1) = n\Gamma(n)$.
- ii. $\Gamma(n+1) = n!$.
- (b) Obtain the Series Solution of $\frac{d^2y}{dx^2} + xy = 0$ [7M]
- 10. (a) Solve the differential equation $y'' + \frac{y'}{x} + \left(8 \frac{1}{x^2}\right)y = 0.$ [7M]
 - (b) Show that $J_0^2 + 2J_1^2 + 2J_2^2 + 2J_3^2 + \dots = 1.$ [7M]