Question Paper Code: AHS003

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech II Semester End Examinations (Regular) - May, 2017 Regulation: IA-R16

COMPUTATIONAL MATHEMATICS AND INTEGRAL CALCULUS

(Common for AE/CE/ME)

Time: 3 Hours

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- 1. (a) Evaluate a real root of $4\sin x = e^x$ by using bisection method. [7M]
 - (b) Construct difference table and then express y as function of x . The corresponding values of x and y are given as $[7{\rm M}]$

Х	0	1	2	3	4
Υ	3	6	11	18	27

2. (a) Find the root of $x^4 - x - 9 = 0$ by using Newton Raphson's method [7M]

(b) Using Gauss's forward interpolation formula find f(30) from the following table [7M]

Х	21	25	29	33	37
Y	18.4708	17.8144	17.1070	116.3422	15.5154

$\mathbf{UNIT}-\mathbf{II}$

3. (a) Fit an exponential curve of the form $y = ae^{bx}$ by the method of least squares for the following data. [7M]

x	5	6	7	8	9	10
у	133	55	23	7	2	2

- (b) Given $y' = 3x + \frac{y}{2}$, y(0) = 1. Compute , y(0.2) by taking h=0.2 using Runge–Kutta methods of fourth order. [7M]
- 4. (a) Use Modified Euler's method to solve $y' = x + \sqrt{y}$ in the range $0 \le x \le 0.4$ by taking h=0.2 given that y =1 at x=0. [7M]
 - (b) Fit a Parabola $y = a + bx + cx^2$ by the method of least squares for the following data: [7M]

x	2	4	6	8	10
у	3.07	12.85	31.47	57.38	91.29

EN LARE O

Max Marks: 70

Max Marks: 7

Hall Ticket No

$\mathbf{UNIT} - \mathbf{III}$

5. (a) Evaluate $\iint_R xydxdy$ where R is the region bounded by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and $\frac{x}{a} + \frac{y}{b} = 1$ [7M]

(b) Evaluate
$$\int_{1}^{e \log \log y e^x} \int_{1}^{e^x} \log z dx dy dz.$$
 [7M]

6. (a) Change the order of integration evaluate

$$\int_{0}^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$$

(b) Find the area enclosed by the parabolas $x^2 = y$ and $y^2 = x$ [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Prove that force field given by $\vec{F} = 2xyz^3\vec{i} + x^2z^3\vec{j} + 3x^2yz^2\vec{k}$ is conservative .Find the scalar potential function. [7M]
 - (b) Evaluate $\iint_{S} \vec{F} \cdot \vec{n} \, ds$ if $\vec{F} = yz\vec{i} + 2y^2\vec{j} + xz^2\vec{k}$ and S is the surface of the cylinder $x^2 + y^2 = 9$, contained in the first octant between the planes z=0 and z=2. [7M]
- 8. (a) Find the angle between the normals to the surface $xy = z^2$ at (1, 4, 2) and (-3, -3, 3). [7M]
 - (b) Using Gauss divergence theorem evaluate $\iint_{s} \overline{f} \cdot \overline{n} \, ds$ over the entire surface of the region above xy plane bounded by the cone $z^{2} = x^{2} + y^{2}$ and the plane z=4 where $\vec{f} = 4 + zi + xyz^{2}j + 3zk$ [7M]

$\mathbf{UNIT}-\mathbf{V}$

9. (a) Prove that
$$\int_{0}^{\pi/2} \sin^2\theta \cos^4\theta d\theta = \frac{\pi}{32}$$
 [7M]

- (b) Obtain the series solution of $\frac{d^2y}{dx^2} + xy = 0$ [7M]
- 10. (a) Show that i. $\cos x = J_0 - 2J_2 + \dots$ [7M]
 - ii. $\sin x = 2J_1 2J_3 + \dots$
 - (b) State and Prove generating function of Bessel's. [7M]

[7M]