INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Four Year B.Tech II Semester End Examinations (Supplementary) - July, 2018

Regulation: IARE – R16

COMPUTATIONAL MATHEMATICS AND INTEGRAL CALCULUS

Time: 3 Hours

(Common to CSE | IT | ECE | EEE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- 1. (a) Using Newton's iterative method, find the real root of $x log_{10} x = 1.2$ correct to five decimal places. [7M]
 - (b) Given $\sin 45^0 = 0.7071$, $\sin 50^0 = 0.7660$, $\sin 55^0 = 0.8192$, $\sin 60^0 = 0.8660$, find $\sin 52^0$, using Newton's forward formula. [7M]
- 2. (a) Interpolate by means of Gauss's backward formula, the population of a town for the year 1974, from the data given in Table 1 below. [7M]

Table 1

Year	1939	1949	1959	1969	1979	1989
Population (in thousands)	12	15	20	27	39	52

(b) Given the values, evaluate f(9) Given the values as shown in Table 2 using Lagrange's formula.[7M]

Table 2

x:	5	7	11	13	17
f(x):	150	392	1452	2366	5202

$\mathbf{UNIT} - \mathbf{II}$

3. (a) Fit a second degree parabola to the following data given in Table 3:

[7M]

Table	3
Labio	<u> </u>

x:	0	1	2	3	4
Y=f(x):	1	1.8	1.3	2.5	6.3

Question Paper Code: AHS003

- (b) Apply Runge Kutta method, find an approximate value of y for x = 0.2 in steps of 0.1 $\frac{dy}{dx} = x + y^2$, given that y=1, when x=0. [7M]
- 4. (a) The pressure and volume of gas are related by the equation $PV^{\gamma} = k$, where γ and k are constants. Fit this equation to the following observations given in Table 4 [7M]

P(Kg/cm2)	0.5	1.0	1.5	2.0	2.5	3.0
V(litres)	1.62	1.00	0.75	0.62	0.52	0.46

(b) Find the value of y for x = 0.1 by RK method, given that $\frac{dy}{dx} = \frac{y-x}{y+x}$, y (0) = 1.

[7M]

$\mathbf{UNIT} - \mathbf{III}$

5. (a) Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyz \, dx \, dy \, dz$$
. [7M]

(b) Evaluate $\int \int r \sin \theta d\theta$ over the cardioid r=a(1-cos θ) above the initial line. [7M]

- 6. (a) Evaluate the integral by reversing the order of integration $\int_{0}^{4a} \int_{x^{2}/4a}^{2\sqrt{ax}} dy \, dx.$ [7M]
 - (b) Find the volume of the solid in the first octant bounded by the planes x=0,y=0,z=0,x+2y+z=6. [7M]

$\mathbf{UNIT} - \mathbf{IV}$

- 7. (a) Check whether $\overline{f} = (6xy + z^3)i + (3x^2 z)j + (3xz^{2-y)k}$ is irrotational and determine its scalar potential. [7M]
 - (b) Evaluate $\int_c \left[(xy + y^2) dx + x^2 dy \right]$, where C is bounded by y=x and y=x². [7M]
- 8. (a) Determine the directional derivative of the function $f(x,y,z)=x^2-y^2+2z^2$ at the point P(1,2,3) in the direction of the line PQ where Q is the point(5,0,4). [7M]
 - (b) Determine $\int_C [(x+y) dx + (2x-z) dy + (y+z) dz]$, where C is the boundary of the triangle with vertices (2,0,0),(0,3,0) and (0,0,6). [7M]

$\mathbf{UNIT} - \mathbf{V}$

- 9. (a) Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. [7M]
 - (b) Prove that the relation $J_n'(x) = \frac{n}{x} J_n(x) J_{n+1}(x).$ [7M]
- 10. (a) Solve the series the equation $(1-x^2)\frac{d^2y}{dx^2} x\frac{dy}{dx} + 4y = 0.$ [7M]
 - (b) Prove that $\int J_3(x) dx = C J_2(x) \frac{2}{x} J_1(x).$ [7M]

 $-\circ\circ\bigcirc\circ\circ-$

Table 4