Hall Ticket No		Question Paper Code: AHS003
INS	TITUTE OF AERONAUTICAL (Autonomous)	. ENGINEERING

B.Tech II Semester End Examinations (Supplementary) - May, 2019 Regulation: IARE – R16

COMPUTATIONAL MATHEMATICS AND INTEGRAL CALCULUS

Time: 3 Hours

(Common to AE | ME | CE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- 1. (a) State newtons forward and backward interpolation formulae for equal length of intervals and write the relation between Δ and E. [7M]
 - (b) From the given Table 1 given below evaluate f(10) by using Lagranges's formula. [7M]

Table	1

Х	5	6	9	11
Υ	12	13	14	16

- 2. (a) State the newtons Raphson's formula. Find the cube root of the number 15. [7M]
 - (b) Find one real root of the equation $x^3-2x-5 = 0$ by method of false position correct to three decimal places. [7M]

$\mathbf{UNIT}-\mathbf{II}$

- 3. (a) Write the normal equations of the parabola by using the method of least square. [7M]
 - (b) Fit a Straight line y = a + bx to the following data given in Table 2 by the method of least squares [7M]

Table 2

Х	0	1	3	6	8
Y	1	3	2	5	4

- 4. (a) Write Euler's and Modified Euler's Formulae.
 - (b) Applying Runge Kutta method of order 4, compute y(0.2) from, $y^1 = (y^2 x^2) / (y^2 + x^2)$ taking y(0)=1 and h=0.2.

[7M]

$\mathbf{UNIT}-\mathbf{III}$

5.	(a)	Explain the change in the order of integration in Cartesian form.	[7M]	
	(b)	Evaluate $\int \int \int 2x dv$ where v is the region under the plane $2x + 3y + z = 6$ that lies in t	he first	
		octant.	[7M]	
6.	(a)	Explain the concept of surface integral in XY, YZ, ZX plane.	[7M]	
	(b)	Obtain the area of the region which is outside the circle $r = 1$ and inside the cardioid		
		$r = (1 + \cos\theta).$	[7M]	
$\mathbf{UNIT}-\mathbf{IV}$				
7.	(a)	State Gauss divergence and Green's theorem.	[7M]	
	(b)	Calculate the line integral by Stokes's theorem for the given $F=[x+y, 2x-z, y+z]$ where C triangle with vertices $(2,0,0), (0,3,0)$ and $(0,0,6)$.	C is the [7M]	
8.	(a)	Define Gradient, Divergent, Curl, Solenoid, Irrotational of a vector.	[7M]	

(b) Obtain the directional derivative of at A in the direction of AB where A = (1,2,-1), B = (5,6,8). [7M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a) State and prove generating function of Bessel's functions.	[7M]
	(b) Solve in series $(1 - x^2) d^2 y / dx^2 - x dy / dx + 4y = 0.$	[7M]
10.	(a) Write the any four recurrence relations of Bessel's functions.	[7M]
	(b) Define Gamma function. State and prove $\Gamma(1/2) = \sqrt{\pi}$	[7M]

 $-\circ\circ\bigcirc\circ\circ-$