Question Paper Code: AHS004

PART TO A LIBERT

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech IV Semester End Examinations (Regular / Supplementary) - May, 2019 Regulation: IARE – R16

COMPLEX ANALYSIS AND PROBABILITY DISTRIBUTION

Time: 3 Hours

(Common to AE | EEE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- (a) Define the term Continuity of a complex variable function f(z). Justify whether every differentiable function is continuous or not. Give a valid example. [7M]
 - (b) If $f(z) = u + iv = \frac{1}{z}$, then show that $u(x,y)=c_1$ and $v(x,y)=c_2$ the curves are intersects orthogonally. [7M]
- 2. (a) Define the term Analyticity and Differentiability of a complex variable function f (z). Prove that an analytic function f (z) with constant real part is always constant [7M]
 - (b) Show that the function $u = x^3 3xy^2$ is harmonic and find the corresponding analytic function.

[7M]

$\mathbf{UNIT} - \mathbf{II}$

- 3. (a) Define the term Power series expansions of complex functions. Write the Cauchy's integral formula and Cauchy's integral formula for multiple connected region. [7M]
 - (b) Verify Cauchy's theorem for the function f(z)=z+1 in the region of c with vertices z=0, z=1, z=1+i, z=i. [7M]

4. (a) Define the term line integral. Evaluate $\int_{0}^{2+i} z^2 dz$ along the real axis to 2 and then vertically to 2+i. [7M]

(b) Evaluate $\int_{c} (3x^2 + 4xy + ix^2) dz$ along the parabola $y = x^2$ from (0,0) to (1,1). [7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) State Cauchy's Residue theorem of an analytic function f(z) within and on the closed curve, Taylor's theorem and Laurent theorem of complex power series. [7M]
 - (b) Represent the function $f(z) = \frac{4z+3}{z(z-3)(z-2)}$ as Laurent series [7M]
 - (i) With in |z|=1
 - (ii) In the annulus region $|\mathbf{z}|{=}2$ and $|\mathbf{z}|{=}3$
 - (iii) Exterior to |z|=3.

- 6. (a) Define
 - i. The Isolated singularity of an analytic function f(z).
 - ii. Pole of order m of an analytic function f(z).
 - iii. Essential and removable singularity of an analytic function f(z).

(b) Prove that
$$\int_{0}^{\pi} \frac{\cos 2\theta}{1-2a \cos \theta + a^2} d\theta = \frac{\pi a^2}{1-a^2}, (a^2 < 1) \text{ using Residue theorem.}$$
[7M]

$\mathbf{UNIT} - \mathbf{IV}$

- 7. (a) Express the relation between the probability mass and cumulative mass function of a random variable. List the important properties of probability mass function [7M]
 - (b) A random variable X has the following probability distribution as shown in Table 1. [7M] Determine (i) k (ii) Mean (iii) Variance (iv) P(X < 6), (v) P(0 < X < 5)

Table 1

x	0	1	2	3	4	5	6	7
p(x)	0	Κ	2k	2k	3k	k^2	$2k^2$	$7k^2$ +k

- 8. (a) Define the term probability density function. Explain mean and variance of a probability density function. Obtain the first 4 moments for the set of numbers 2, 4, 6 and 8. [7M]
 - (b) Let X denote the maximum of the two numbers that appear when a pair of fair dice is thrown once. Find (i) Discrete probability distribution (ii) Expectation and (iii) Variance [7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Explain in detail about mean and variance of Binomial distribution. Draft the recurrence relation for the Binomial distribution. [7M]
 - (b) Assume that 50% of all engineering students are good in mathematics. Determine the probabilities that among 18 engineering students (i)exactly10 (ii) At least 10 (iii) At most 8 (iv) At most 9 are good in mathematics.
- 10. (a) Explain the median and variance of a Normal distribution. [7M]
 - (b) The marks obtained in mathematics by 1000 students is normally distributed with mean 78% and standard deviation 11%. Determine (i) How many students got marks above 90%. (ii) What was the highest mark obtained by the lowest 10% of the students. [7M]

$$-\circ\circ\bigcirc\circ\circ-$$