Hall Ticket No				Question Paper Code: AHS004
	STITU	F AERC (Au	NAUTI itonomou	CAL ENGINEERING

B.Tech IV Semester End Examinations (Regular) - May, 2018 Regulation: IARE – R16

COMPLEX ANALYSIS AND PROBABILITY DISTRIBUTION

Time: 3 Hours

(Common to AE | EEE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a) If $f(z)$ is an analytic function with constant modulus, show that $f(z)$ is constant.	[7M]
	(b) Show that the function $f(z) = \overline{Z}$ is continuous at every point but not differentiable at any point	
	at any point.	[7M]

2. (a) Find the points at which the function
$$f(z) = e^{|z|^2}$$
 is analytic. [7M]

(b) Show that $u(x, y) = \cos x \cosh y$ is harmonic and find its conjugate harmonic function.

[7M]

$\mathbf{UNIT} - \mathbf{II}$

3. (a) Evaluate $\int_C \operatorname{Re} z \, dz$, where *C* is the unit circle $x^2 + y^2 = 1$. [7M] (b) Evaluate $\int_C \frac{e^{z^2+1}}{z} \, dz$, where $c: z = x + iy = 5\cos(t) - 3i\sin(t)$, $0 \le t \le 2\pi$.

[7M]

- 4. (a) Evaluate $\int_{c} Z^{-2} dz$, C is a |z 1| = 1. [7M]
 - (b) Evaluate $\oint_C \frac{z \sin z}{z \sin z} dz$, where C : |z 3| = 1. [7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Find the Taylor's series expansion of $f(z) = \log z$, about $z_0 = i$. Also find the radius of convergence [7M]
 - (b) Evaluate $\int_0^{2\pi} \frac{d\theta}{2-\cos\theta}$ using contour integration.

[7M]

6. (a) By using Cauchy's residue theorem, evaluate the integral $\int_{c} \frac{z^2}{(z-1)^2(z+2)} dz$ where C is the circle |z|=5/2. [7M]

(b) Find the bilinear transformation that maps the points $z_1=0$, $z_2=-i$, $z_3=-1$ on the points $w_1=i$, $w_2=1$, $w_3=0$. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) A box contains 12 items of which 4 are defective. A sample of 3 items is selected from the box. Let X denote the number of defective items in the sample. Find the probability distribution of X. Determine the mean and variance. [7M]
 - (b) A petrol pump is supplied with petrol once a day. If its daily volume X of sales in thousands of litre is distributed by $f(x)=5(1-x)^4$, $0\leq X\leq 1$. What must be the capacity of its tank in order that the probability that its supply will be exhausted in a given day shall be 0.01? [7M]
- 8. (a) A continuous random variable X has p.d.f $f(x)=3x^2, 0 \le x \le 1$. Find 'a' and 'b' such that
 - i. $P(x \le a) = P(x \ge a)$
 - ii. P(X < b) = 0.05.

[7M]

(b) If the moments of a variable X are defined by $E(x^r)=0.6$, r=1,2,3. Show that P(X=0)=0.4, P(X=1)=0.6, $P(X \ge 2) = 0$.

[7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) If X is a normal distribution with mean 5 and variance 2 then find $P\{|X-1| \le 5\}$. [7M]
 - (b) 30% of items produced from a factory are defective. Find the probability that in a sample of 5 chosen at random
 - i. None is defective
 - ii. One is defective
 - iii. At least 3 are defective.

[7M]

- 10. (a) If the probability that an individual suffers a bad reaction from a certain injection is 0.001. Determine the probability that out of 2000 individuals
 - i. Exactly 3 suffers a bad reaction
 - ii. More than 2 individuals suffers a bad reaction
 - iii. None suffers a bad reaction.
 - (b) If the probability density function of a random variable is then $f_X(x) = \frac{1}{\sqrt{10\pi}} e^{-\frac{(x-2)^2}{10}}$ find mean, variance and $P\{-1 < X \le 3\}$

[7M]

$$-\circ\circ\bigcirc\circ\circ-$$