INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Four Year B.Tech II Semester End Examinations (Supplementary) - July, 2018 Regulation: IARE – R16

Complex Analysis and Probability Distribution

Time: 3 Hours

(ECE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

- 1. (a) Show that $\lim_{z\to 0} \frac{x^2y}{x^4+2y^2}$ does not exist even though this function approaches the same limit along every straight line through the origin. [7M]
 - (b) If $\varphi + i\psi$ represents the complex potential of an electric field where $\psi = x^2 y^2 + \frac{x}{x^2 + y^2}$ find φ and also complex potential as a function of x. [7M]
- 2. (a) Find the analytic function whose real part is $u = e^{2x} (x \cos 2y y \sin 2y)$. [7M]

(b) If
$$f(z) = u + iv$$
 is analytic prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$. [7M]

$\mathbf{UNIT} - \mathbf{II}$

3. (a) State and Prove Cauchy's integral theorem.[7M](b) Evaluate $\int_{C} \frac{dz}{(z^2+4)^2}$ where C is |z-i|=2 by using Cauchy integral formula[7M]

4. (a) When 'n' is negative integer, evaluate $\oint_C (z-a)^n dz$ where C is simple closed curve and the point z = a is (i) inside C (ii) outside C. [7M]

(b) Evaluate
$$\int_C \frac{z}{(z-1)(z-2)^2} dz$$
, where $C : |z-2| = 0.5$. [7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Find the Taylor's series of $\log_e(1+e^z)$ about z = 0. [7M]
 - (b) Evaluate $\int_{0}^{\pi} \frac{d\theta}{1+a\cos\theta}$, 0 < a < 1 by residue theorem. [7M]

6. (a) Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{1 - 2a\cos\theta + a^2}, 0 < a < 1$$
 [7M]

(b) Find the Bilinear transformation which maps the points 0, 1, ∞ into the points -5, -1, 3 respectively. [7M]

 $\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) If X has the Probability density function $f(x) = \frac{1}{2}e^{-|x|}, -\infty < x < \infty$, find the moment generating function of X. [7M]
 - (b) The density function of a random variable X is given by $f(x) = Kx(2-x), 0 \le x \le 2$, Find K, mean variance rth moment. [7M]

8. (a) A random variable X has the probability function for Various Values of X. i.Find K ii.Evaluate P(x≥6) and P(3<x≤6)

iii.Find Cumulative Distribution Function

Table 1

x:	0	1	2	3	4	5	6	7
P(x):	0	K	$2\mathrm{K}$	2K	3K	K^2	$2K^2$	$7K^2$ +K

(b) If the Probability density function is given by $f(x) = \begin{cases} 2(1-x), \ 0 < x < 1 \\ 0, otherwise \end{cases}$

i. Find Mean

ii. Evaluate $E[(2x+1)^2]$

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) The probability that a bulb has at least 100 days of life is 0.05. Find the probability that out of 6 bulbs tested (i) at least one (ii) none will have a life of at least 100 days. [7M]
 - (b) If the time to print an 8 x 10 size photograph may be looked upon as a random variable having the normal distribution with a mean of 10.1 seconds and a standard deviation of 2.7 seconds. Find the probability that it will take (i) anywhere from 8.5 to 13 seconds (ii) at least 15.1 seconds to print a photograph of this size. [7M]
- (a) A distributor of bean seeds determines form extensive tests that 5% of large batch of seeds will not germinate. He sells the seeds in packets of 200 and guarantees 90% germination. Use Poisson distribution to determine the probability that a particular packet violates the guarantee. [7M]
 - (b) Most graduate schools of business require applicants for admission to take the Graduate Management Admission Council's GMAT examination. Scores on the GMAT are roughly normally distributed with a mean of 527 and a standard deviation of 112. What is the probability of an individual scoring above 500 on the GMAT? [7M]

 $-\circ\circ\bigcirc\circ\circ-$

[7M]

[7M]