Hall Ticket No	Question Paper Code: AHS005			
(Autonomous)				
⁷ _{0_{N FOR} ¹, ⁶⁶ B.Tech I Semester End Examinations (Regula}	r) - December, 2016			
Regulation: IA - R16				
ENGINEERING CHEMIS	STRY			
(Common for all branch	nes)			
Time: 3 Hours	Max Marks: 70			

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

- (a) Describe the construction and working of lead acid storage battery. Give the reactions that occur during discharge. Mention its applications. [7M]
 (b) With the allowed the storage battery is a storage battery. [7M]
 - (b) Write the cell representation and calculate the EMF for the cell reaction: [7M] $Zn_{(s)} + Fe^{2+}(0.005) \leftrightarrow Zn^{2+}(0.01 M) + Fe_{(s)}.Given, E^0$ values of iron and zinc are -0.44 V and -0.76 V respectively.
- 2. (a) Derive the Nernst equation for a single electrode potential. [7M]
 - (b) What is a reference electrode? Give the construction and working of calomel electrode with reactions. [7M]

$\mathbf{UNIT}-\mathbf{II}$

3.	(a)	What are the different reactions taking place at the cathode during corrosion? How do ca	thodic
		inhibitors work to reduce the rate of these reactions (Mention any two)?	[7M]
	(b)	Explain the process of tinning and galvanizing with example.	[7M]
4.	(a)	What is cathodic protection? Explain the sacrificial anode method of protection.	[7M]
	(b)	Discuss the effect of the following factors on rate of corrosion	[7M]

- i. Nature of metal
- ii. Nature of environment

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Explain the determination of hardness of water by complexometric method. [7M]
 - (b) A sample water of 100 ml required 12.6 ml of 0.02 M EDTA solution with EBT as indicator and 8.4 ml of 0.02 M EDTA for the same volume of water after removing the carbonate hardness. Calculate the total, permanent and temporary hardness in terms of calcium carbonate equivalents.

[7M]

- 6. (a) Compare and contrast the temporary and permanent hardness of water. [7M]
 - (b) Calculate temporary and permanent hardness of a water sample which contains 6.8mg of $CaSO_4$, 33mg of $CaCl_2$, 40mg of Na_2SO_4 , 24mg of $MgSO_4$ per liter of the water sample. (Given Molar mass of Ca=40g, Na=23g, Mg=24g, S=32g, O=16g, Cl=35.0g) [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Differentiate addition and condensation polymerisation. Give suitable examples. [7M]
 - (b) What are refractories? Explain how they are classified and give atleast two advantages. [7M]
- 8. (a) Define and differentiate thermoplastic and thermosetting polymers (any 5 points). Give an example for each type [7M]
 - (b) What is cement? Discuss the merits and demerits of dry and wet process for the manufacture of Portland cement. [7M]

$\mathbf{UNIT} - \mathbf{V}$

9.	(a)	What is cracking? Explain the process of fixed bed catalytic cracking of petroleum.	[7M]
	(b)	Explain Ultimate analysis of coal along with its significance	[7M]
10.	(a)	Describe fractional distillation of petroleum mentioning the components, composition, point ranges and applications.	boiling $[7M]$
	(b)	A sample of coal was found to have the following % composition by weight. C = 70%, H	= 6%,
		O = 14%, $N=5%$ and rest is ash. Calculate GCV and NCV.	[7M]