Hall	Ticket	No

Question Paper Code: AHS006

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Four Year B.Tech I Semester Supplementary Examinations - July, 2018

Regulation: IARE - R16

ENGINEERING PHYSICS

Time: 3 Hours

(Common to CSE | IT | ECE | EEE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a)	What is polarization? Explain different types of polarizations mechanisms with suitable diag and formula. ['	gram 7 M]
	(b)	Establish the relation between dielectric constant and its dielectric susceptibility. ['	7M]
2.	(a)	Explain magnetic dipole moment, magnetization and magnetic susceptibility with suitable diagram and formula.	7M]
	(b)	The susceptibility of paramagnetic $FeCl_3$ is 3.7 x 10^{-3} at 27 ⁰ C.What will be the value or relative permeability at 200 ⁰ K and 500 ⁰ K.	of its 7 M]

$\mathbf{UNIT}-\mathbf{II}$

3.	(a)	Obtain an expression for energy density of radiation under equilibrium condition in to Einstein's coefficients also explain with conditions leading to laser action.	erms of [7 M]	
	(b)	List the applications of laser in industry and medicine.	[7M]	
4.	(a)	Explain the construction and working of a semiconductor laser with suitable diagram.	[7M]	
	(b)	Discuss in brief the characteristics of a laser beam.	[7M]	
$\mathbf{UNIT}-\mathbf{III}$				
5.	(a)	Discuss the variation of density of states for various quantum structures.	[7M]	
	(b)	How nonmaterial's can be prepared using chemical vapour deposition method? Analyze.	[7M]	

- 6. (a) The size of the particle decides the various properties like electrical ,mechanical, magnetic of the nanomaterials? Justify. [7M]
 - (b) Explain TEM. How it is helpful in characterization of nonmaterials. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Explain the de Broglie hypotheses for the matter waves and illustrate the physical significance of the wave function. [7M]
 - (b) Describe the construction and working of the Davisson-Germer experiment (D-G) , and hence to prove the wave nature of the electron. $[7{\rm M}]$

- 8. (a) Set up time independent Schrödinger wave equation for a particle and explain Eigen function and Eigen values. [7M]
 - (b) Compute the de Broglie wavelength for a neutron moving with one tenth part of the velocity of light. $(m_n=1.674 \times 10^{-27} \text{ kg})$. [7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Prove that the fermi level in an intrinsic semiconductor is half of its energy gap. [7M]
 - (b) Explain Hall Effect. Obtain the Hall voltage in terms of Hall coefficient for a P type semiconductor. [7M]
- 10. (a) Derive an expression for the carrier concentration of an intrinsic semiconductor. Explain the concept of hole in semiconductors. [7M]
 - (b) Explain the fermi level existence in case of p type and n type semiconductors at T=0K using the energy level diagram. [7M]