Hall Ticke	t No										Question Paper Code: AHS011
	INS	STI	Γυτ	ΕO	F A	١EF	ROI	NA	U	ΓΙϹ	AL ENGINEERING
IARE						(.	Aut	ond	omo	ous)	

B.Tech I/II Semester Supplementary Examinations - July, 2017 Regulation: IA-R16

MATHEMATICAL TRANSFORM TECHNIQUES

[II Semester - (Electrical and Electronics Engineering)]

Time: 3 Hours

Max Marks: 70

[7M]

[7M]

[7M]

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a) Obtain the Fourier series for in $f(x) = 1 - x^2$ in (-1,1).	[7M]
	(b) Determine the half range sine series in $f(x) = e^x$ in (0,1).	[7M]

- 2. (a) Determine the Fourier series for f(x) = |x| in $(-\pi, \pi)$. [7M]
 - (b) Obtain the half range sine series $f(x) = x^2$ in (0,4).

$\mathbf{UNIT}-\mathbf{II}$

3. (a) Express $f(x) = \begin{cases} 1 & \text{for } 0 \le x \le \pi \\ 0 & \text{for } x > \pi \end{cases}$ as Fourier sine integral and hence evaluate $\int_{0}^{\infty} \frac{1 - \cos(\pi \lambda)}{\lambda} \sin(x\lambda) d\lambda$.

(b) Determine the Fourier cosine transform of
$$f(x) = \begin{cases} \cos x & \text{for } 0 < x < 1 \\ 0 & \text{for } x > 1 \end{cases}$$
 [7M]

4. (a) Find the Fourier cosine transform of

$$f(x) = \begin{cases} x, \text{ for } 0 < x < 1\\ 2 - x, \text{ for } 1 < x < 2\\ 0, \text{ for } x > 2 \end{cases}$$

(b) Determine the inverse Fourier transform f(x) of $f(p) = e^{-|p|y}$ [7M]

$\mathbf{UNIT} - \mathbf{III}$

5. (a) Find the Laplace transform of the full wave rectifier function defined by f(t) = E sin ωt for 0 < t < π/ω having period π/ω. [7M]
(b) Find the Laplace transform of sinh 3tcos²t. [7M]
6. (a) Find L⁻¹ {S log (S+4/S-4)}. [7M]

(b) Using Convolution, find
$$L^{-1}\left\{\frac{4S+5}{(S-1)^2(S+2)}\right\}$$
. [7M]

$$UNIT - IV$$

7. (a) Find the Z - transform of $\sin(3n+5)$. [7M]

(b) If the Z -transform of
$$U_n$$
 is $\frac{2z^2+3z+4}{(z-3)^3}$, compute U_1 and U_2 . [7M]

- 8. (a) Using convolution theorem, determine the inverse Z- transform of $\frac{z^2}{z^2 8z + 12}$. [7M]
 - (b) Using Z transform, determine the response of the system $u_{n+2} 5u_{n+1} + 6u_n = 1$ with $u_0 = 0, u_1 = 1.$ [7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Solve the partial differential equation x²(y z)p + y²(z x)q = z²(x y). [7M]
 (b) Solve y ∂u/∂x + x∂u/∂y = 3u and u(x, 0) = e^{x²} by the method of separation of variables. [7M]
- 10. (a) Using Charpit's method, solve $2x(z^2q^2+1) = pz$. [7M]
 - (b) Find the solution of the wave equation subjected to the conditions. $\begin{aligned} y &= P_0 \cos Pt, x = l \\ y &= 0, x = 0 \end{aligned} . \eqref{TM}$

$$-\circ\circ\bigcirc\circ\circ-$$