INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)

B.Tech IV Semester End Examinations (Supplementary) - July, 2018
 Regulation: IARE - R16
 MATHEMATICAL TRANSFORM TECHNIQUES

Time: 3 Hours
(Common to ME|CE)
Max Marks:
70
Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

UNIT - I

1. (a) Determine the Fourier series for $f(x)=e^{-x}$ in $(0,2 \pi)$.
(b) Obtain the half range cosine series $f(x)=(x-1)^{2}$ in $(0,1)$
2. (a) Obtain the Fourier series for $f(x)=\left\{\begin{array}{cc}-\pi & \text { for }-\pi<x<0 \\ x \text { for } 0<x<\pi\end{array}\right.$ in $(-\pi, \pi)$.
(b) Obtain the half range sine series $\mathrm{f}(\mathrm{x})=\mathrm{x}$ in $(0,2)$.

UNIT - II

3. (a) Using Fourier sine integral, show that $\int_{0}^{\infty}\left[\frac{\lambda \sin \lambda x}{1+\lambda^{2}}\right] d \lambda=\frac{\pi}{2} e^{-x}, x \geq 0$.
[7M]
(b) Determine the Fourier cosine transform of $f(x)=\left\{\begin{array}{rr}1 & \text { for } 0 \leq x \leq a \\ 0 & \text { for } x>a\end{array}\right.$
4. (a) Determine the Fourier sine transform of $f(x)=e^{-a x}$ for $a>0, x>0$.
(b) Find the Fourier cosine transform of $f(x)=\left\{\begin{array}{c}x, \text { for } 0<x<1 \\ 2-x, \text { for } 1<x<2 \\ 0, \text { for } x>2\end{array}\right.$

UNIT - III
5. (a) Find the Laplace Transform of the periodic triangular wave function of period 2 a is given by, $f(t)=\left\{\begin{array}{cl}t, & 0<t<a \\ 2 a-t, & a<t<2 a\end{array}\right.$
(b) Solve $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+5 y=e^{-x} \sin x$ using Laplace transform where $y(0)=0, y^{\prime}(0)=1$.
6. (a) Using Convolution Theorem find the Inverse Laplace Transform of $\frac{s^{2}}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}$.
(b) Using Laplace Transform, evaluate $\int_{0}^{\infty} \frac{e^{-t} \sin ^{2} t}{t} d t$.

UNIT - IV

7. (a) Solve $u_{n+2}+6 u_{n+1}+9 u_{n}=2^{n}$ with $u_{0}=u_{1}=0$ using Z-Transforms.
(b) Find Z-transforms of (i) $\mathrm{n} \operatorname{cosn} \theta$ (ii) $(n+1)^{2}$
8. (a) Find the Inverse Z-Transform of $\frac{z^{3}-20 z}{(z-2)^{3}(z-4)}$
(b) If $U(z)=\frac{2 z^{2}+5 z+14}{(z-1)^{4}}$, find the value of U_{2} and U_{3}

UNIT - V

9. (a) Solve by the method of separation of variables $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, 0)=6 e^{-3 x}$.
(b) Form the partial differential equation by eliminating arbitrary functions from $z=y f(x)+x g(y)$.
10. (a) Derive one-dimensional heat equation.
(b) Solve $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=z\left(x^{2}-y^{2}\right)$
