Hall Ticket No	Question Paper Code: AHS011	
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)		
B.Tech III Semester End Examinations (Regular) - December, 2017		
${\bf Regulation: \ IARE-R16}$		
MATHEMATICAL TRANSFORM AND TECHNIQUES		
$(Common to AE \mid ECE)$	E)	
me: 3 Hours	Max Marks: 70	

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a) Find the Fourier series of $f(x) = x^2$ in (0,4) hence the value of $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$	[7M]
	(b) Find the Fourier series of $f(x) = x $ on $(-\pi, \pi)$.	[7M]

2. (a) Obtain the Fourier series of

$$f(x) = \begin{cases} 1 + (2x/\pi), & -\pi \le x \le 0\\ 1 - (2x/\pi), & 0 \le x \le \pi \end{cases}$$

(b) Find half range Fourier cosine series of $f(x) = \begin{cases} kx, & 0 \le x \le l/2 \\ k(l-x), & l/2 \le x \le l \end{cases}$ and hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \dots$ [7M]

- $\mathbf{UNIT} \mathbf{II}$
- 3. (a) Find the Fourier transform of $e^{-\alpha x^2}$ [7M]
 - (b) Find the Fourier sine transform of $e^{-|x|}$ and hence evaluate $\int_{0}^{\infty} \frac{x \sin(mx)}{1+x^2}$. [7M]
- 4. (a) Find the Fourier cosine and sine transform of $f(x) = \begin{cases} x \text{ for } 0 < x < 1 \\ 2 x \text{ for } 1 < x < 2 \\ 0 \text{ for } x > 2 \end{cases}$ [7M]
 - (b) Find the finite Fourier cosine and sine transform of $f(x) = \begin{cases} 1 \text{ for } 0 < x < \frac{\pi}{2} \\ -1 \text{ for } \frac{\pi}{2} < x < \pi \end{cases}$ [7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Find $L\left\{\left(1+te^{-t}\right)^3\right\}$. [7M]
 - (b) Find the value of f(t), given that $f(t) \int_0^t (t-\tau) f(\tau) d\tau = -t.$ [7M]

[7M]

- 6. (a) Obtain the Laplace transform of $f(t) = \begin{cases} t, & 0 \le t \le a \\ 2a t, & a \le t \le 2a \end{cases}$ where f(t + 2a) = f(t)and hence shown that $L\{f(t)\} = \frac{1}{s^2} \tanh\left(\frac{as}{2}\right)$. [7M]
 - (b) Solve using Laplace transforms, $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 3te^{-t}$, x = 4, $\frac{dx}{dt} = 2$ when t=0. [7M]
 - $\mathbf{UNIT}-\mathbf{IV}$
- 7. (a) Find Z-transform of [7M] i. $a^{-n}cosnq$. ii. $Z\left(\frac{1}{n!}\right)$ and $Z\left(\frac{1}{(n+2)}\right)$

(b) Applying resolving into partial fractions, find inverse Z-transform of $\frac{z(2z+3)}{(z+2)(z-4)}$. [7M]

8. (a) Using the Z-transform, solve $u_{n+2} + 6u_{n+1} + 9u_n = 2^n$ with $u_0=0, u_1=0.$ [7M] (b) Using the inverse integral method, find the inverse Z-transform of $\frac{z}{(z-1)(z-3)}$. [7M]

$\mathbf{UNIT} - \mathbf{V}$

- 9. An insulated rod of length has its ends at A and B maintained at 0°C and 100°C respectively under steady conditions are reached. If B is then suddenly reduced to 0°C and maintained at 0°C. Find the temperature at a distance x from A at time 't'. [14M]
- 10. (a) Form a partial differential equation by eliminating arbitrary function from [7M] z = xf(ax + by) + g(ax + by).
 - (b) Solve $z_{xx} 2z_x + z_y = 0$ by separation of variables.

 $-\circ\circ\bigcirc\circ\circ-$

[7M]