Hall Ticket	No											Question Paper Code: AHS013
2000	INSTITUTE OF AERONAUTICAL ENGINEERING											
Su LARE S	(Autonomous)											
FOR CO	I	B.Te	ch I	II Se	emes	ter I	End	Exa	mina	ation	ns (F	(Regular) - December, 2017
						D	0001	lati	0.00.	ΤΛΙ	DF	D16

B. Tech III Semester End Examinations (Regular) - December, 2017 Regulation: IARE – R16 DISCRETE MATHEMATICAL STRUCTURES

(Common for CSE | IT)

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

1.	(a) List and explain the Well-formed Formulas and Equivalent Formulas.	[6M]
	(b) Verify the following logical equivalences using truth tables	[8M]
	i. $[(P \lor Q) \to R)] \Leftrightarrow [(P \to R) \land (Q \to R)]$	
	ii. $[P \to (Q \lor R) \Leftrightarrow [\neg R \to (P \to Q)]$	
2.	(a) Verify the validity of the following argument. Tigers are dangerous animals.	There are Tigers.
	Therefore there are dangerous animals.	[7 M]

(b) Show that $R \to S$ is a valid conclusion from the premises $P \to (Q \to S), \neg R \lor P$ and Q. [7M]

$\mathbf{UNIT} - \mathbf{II}$

3.	(a) Define the following and give suitable examples for each	[6M]
	· T	

- i. Lattice
- ii. Sub lattice
- iii. Distributive lattice
- iv. Complemented lattice
- (b) Let A be the given finite set and $\rho(A)$ is its power set. Let \subseteq be the inclusion relation on the elements of $\rho(A)$. Draw the Hasse diagrams of ($\rho(A), \subseteq$) for [8M]
 - i. $A = \{a\}$
 - ii. A= $\{a,b\}$
 - iii. $A = \{a, b, c\}$
 - iv. $A = \{a, b, c, d\}$
- 4. (a) Let n be a positive integer and Sn be the set of all divisors of n. let D denote the relation of "division". Draw the diagrams of lattices (S_n, D) for n = 6, 8, 24 and 30. [7M]
 - (b) Consider f(x) = x+2, g(x) = x-2 and h(x) = 3x for $x \in \mathbb{R}$, where \mathbb{R} is the set of real numbers. Find gof(x), fog(x), fof(x), gog(x), foh(x), hof(x) and fohog(x). [7M]

$\mathbf{UNIT}-\mathbf{III}$

5.	(a) (b)	Define Monoid and prove that identity element in a monoid is unique. Prove the Pascal's identity $C(n, r) = C(n-1, r) + C(n-1, r-1)$.	[7M] [7M]				
6.	(a) (b)) Find the term containing x^8 in the expansion of $\left(x^2 - \frac{2}{x^2}\right)^8$.) Determine the number of non negative integral solutions of the equation $x_1 + x_2 + x_3 + x_4 + x_5 = 18$ where each $x_i \ge 2$.					
	$\mathbf{UNIT} - \mathbf{IV}$						
7.	(a)	Solve the recurrence relation using generating functions $a_n - 7a_{n-1} + 10a_{n-2} = 0$ where $a_0 = 10, a_1 = 41$	[7M]				
	(b)	Find the solution of the recurrence relation using characteristic roots $a_n - 5a_{n-1} + 6a_{n-2} = 0$ where $a_0 = 2$, $a_1 = 5$	[7M]				
8.	(a)	Find the solution of $a_n - 4a_{n-1} - 12a_{n-2} = 0$, $n \ge 2$, $a_0 = 4$; $a_1 = \frac{16}{3}$ by the met Characteristic roots.	hod of [7M]				
	(b)	Find the coefficient of x^{18} in the product $(x + x^2 + x^3 + x^4 + x^5)(x^2 + x^3 +)^5$.	[7M]				
		$\mathbf{UNIT} - \mathbf{V}$					
9.	(a)	Define the following and provide suitable example for each i. Isomorphic graph ii. Euler graph iii. Hamiltonian Graph iy. Planar Graph	[7M]				
	(b)	Find a minimal spanning tree for the graph shown in Figure 1.	[7M]				
		$\begin{array}{c} 20 \\ a \\ a \\ a \\ b \\ b \\ b \\ b \\ c \\ 15 \\ c \\ $					

Figure 1

10. (a) Define

[7M]

- i. Complete graph
- ii. Bipartite graph with an example for each

Figure 2

 $-\circ\circ\bigcirc\circ\circ-$