Hall Ticket	No	Question Paper Code: AHSB02
INSTITUTE OF AERONAUTICAL ENGINEERING		
(Autonomous)		
B.Tech I Semester End Examinations (Supplementary) - January, 2019 Regulation: IARE – R18 LINEAR ALCEBRA AND CALCULUS		
Time: 3 Hou	(Common to All Branches)	May Marks: 70
	Answer ONE Question from each Uni All Questions Carry Equal Marks	it

 $\mathbf{UNIT} - \mathbf{I}$

All parts of the question must be answered in one place only

1. (a) Using Gauss – Jordan method, find the inverse of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & 4 \end{bmatrix}$. [7M] (b) Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$ by reducing the matrix to an echelon form.

[7M]

2. (a) Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$. [7M]

(b) Diagonalize the matrix
$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
 [7M]

$\mathbf{UNIT}-\mathbf{II}$

3. (a) Verify Lagrange's mean value theorem for the function f(x) = x(x-1)(x-2), in $[0, \frac{1}{2}]$. [7M] (b) If u = f(x-y, y-z, z-x) show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$. [7M]

4. (a) If
$$x=u(1-v)$$
, $y=uv$ determine $\frac{\partial(u,v)}{\partial(x,y)}$. [7M]

(b) Verify Lagrange's mean value theorem for $f(x) = x^3 - x^2 - 5x + 3$ in [0,4]. [7M]

$\mathbf{UNIT} - \mathbf{III}$

5. (a) Solve
$$(D^2 + 5D + 6) y = e^x + x^2$$
. [7M]
(b) Find the current I(t) in a series R-L circuit in which L=1H, R=5 Ω , E=1V and I(0)=0. [7M]

[7M]

$\mathbf{UNIT} - \mathbf{IV}$

7. (a) Evaluate the triple integral
$$\int_{0}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz.$$
 [7M]

(b) Evaluate
$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$$
 by changing to polar coordinates [7M]

8. (a) Evaluate the double integral
$$\int_{0}^{1} \int_{0}^{\sqrt{1+x^2}} \frac{dxdy}{1+x^2+y^2}.$$
 [7M]

(b) Evaluate $\iint_R xy(x+y)$ where R is the region bounded by the parabolas $y=x^2$ and y=x. [7M]

$\mathbf{UNIT} - \mathbf{V}$

- 9. (a) Show that $\vec{F} = (y^2 z^2 + 3yz 2x)\vec{i} + (3xz + 2xy)\vec{j} + (3xz + 2xy)\vec{k}$ is both irrotational and solenoidal. [7M]
 - (b) Determine the directional derivative of $f=xy^2+yz^3$ at the point (2,-1,1) in the direction of the vector $\bar{a} = \bar{i} + 2\bar{j} + 2\bar{k}$. [7M]
- 10. (a) Using Gauss divergence theorem evaluate $\int \int_{s} \overrightarrow{Fn} ds$ where $\overrightarrow{F} = 4xz \overrightarrow{i} y^{2} \overrightarrow{j} + yz \overrightarrow{k}$ and S is a cube bounded by the planes x=0, x=2, y=0, y=2, z=0, z=2. [7M]
 - (b) Verify Stokes theorem for $\overrightarrow{F} = (x^2 y^2) \overrightarrow{i} + 2xy \overrightarrow{j}$ into the rectangular region in the xy-plane bounded in the lines x=0, x=a, y=0, y=b. [7M]

$$-\circ\circ\bigcirc\circ\circ-$$