Hall Ticket No		Question Paper Code: AHSB02
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)		
Four Year B.Tech I Semester End Examinations(Regular) - December, 2019 Regulation: IARE – R18		
Time: 3 Hours	LINEAR ALGEBRA AND CALCUL (Common to All Branches)	US Max Marks: 70
Answer ONE Question from each Unit		

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- 2. (a) Solve the second order differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = \cos^2 x.$ [7M] (b) Solve the differential equation by variation of parameters method $(D^2 + 1) y = \sec x.$ [7M]

$\mathbf{UNIT} - \mathbf{II}$

- 3. (a) Find the eigen values and eigen vectors of $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$. [7M] (b) Using Cayley - Hamilton theorem find A^{-1} for $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$. [7M]
- 4. (a) Change the order of integration $\int_{0}^{4} \int_{y}^{4} \frac{x \, dx \, dy}{x^2 + y^2}.$ [7M]
 - (b) Find by double integration, the area lying inside the circle r=a sin θ and outside the cardioid r=a(1-Cos θ). [7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Verify Lagrange's Mean Value theorem for the function x(x-1)(x-2) in $[0,\frac{1}{2}]$. [7M]
 - (b) Verify Rolle's theorem for the function $(x-1)^2 (x-2)^2$ in [1,2]. [7M]
- 6. (a) Using triple integration find the volume of the sphere $x^2 + y^2 + z^2 = a^2$. [7M]

(b) Evaluate the triple integral
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyz \, dz \, dy \, dx.$$
 [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) If u = x² 2y², v = 2x² y², where x = r cos θ, y = r sin θ, show that ∂(u,v)/∂(r,θ) = 6r³ sin 2θ. [7M]
 (b) Find the dimensions of the rectangular box, open at the top, of max capacity whose surface area is 32 sq.cm. [7M]
- 8. (a) Explain the procedure for finding the stationary and extreme points of a two independent variable function f(x,y). [7M]
 - (b) Prove that the rectangular solid of maximum volume which can be inscribed in a sphere is a cube. [7M]

$\mathbf{UNIT} - \mathbf{V}$

- 9. (a) Find the circulation of $\overline{F} = (2x y + 2z)\overline{i} + (x + y z)\overline{j} + (3x 2y 5z)\overline{k}$ along the circle $x^2 + y^2 = 4$ in the xy plane. [7M]
 - (b) Find the constant 'a' so that $\overline{F} = (a x y z^3) \overline{i} + (a 2) x^2 \overline{j} + (1 a) a z^3 \overline{k}$ is a conservative field. [7M]
- 10. (a) Applying Green's theorem evaluate $\int_{c} (xy + y^2)dx + x^2 dy$ where C is the region bounded by $y = \sqrt{x}$ and $y = x^2$. [7M]
 - (b) Find the directional derivative of the function $\phi = xy^2 + yz^3$ at the point P(1,-2,-1) in the direction to the surface x log z $y^2 = -4$ at (-1,2,1). [7M]