Hall Ticket No	per Code: AHSB02
INSTITUTE OF AERONAUTICAL ENGINEERIN (Autonomous)	NG
B.Tech I Semester End Examinations (Regular) - November, 2018 Regulation: IARE – R18 LINEAR ALGEBRA AND CALCULUS	
Time: 3 Hours(Common to All Branches)	Max Marks: 70
Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only	
$\mathbf{UNIT} - \mathbf{I}$	
1. (a) Determine a and b, if the rank of the matrix $\begin{bmatrix} 1 & -2 & 3 & 1 \\ 2 & 1 & -1 & 2 \\ 6 & -2 & a & b \end{bmatrix}$ is 3.	[7M]
(b) Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$. [7M]
2. (a) Find the inverse of the matrix $A = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$ by Gauss-Jordan method.	[7M]
(b) Verify Cayley – Hamilton theorem for $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 3 \\ 1 & 1 & 2 \end{bmatrix}$.	[7M]
$\mathbf{UNIT} - \mathbf{II}$	
3. (a) Verify Rolle's theorem for $f(x) = \log \left[\frac{x^2 + ab}{x(a+b)}\right]$ in $[a, b], b > a > 0$.	[7M]

(b) Determine maxima and minima of the function $x^3 + y^3 - 3axy$, a < 0.

[7M]

- 4. (a) If u = x + y + z; uv = y + z; uvw = z then find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$. [7M]
 - (b) A rectangular box, open at the top is to have a volume of 32cc. Find the dimensions of the box requiring least material for its construction. [7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Solve $(D^2 + 3D + 2) y = 4\cos^2 x$. [7M] (b) Solve $(D^2 + 16) y = x \sin 3x$. [7M]
- 6. (a) Solve (D² 4D + 3) y = e^x cos 2x. [7M]
 (b) Find the current I(t) in a series R-L circuit in which L = 1 H, R = 5 Ω, E = 1 and I(0)=0. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Evaluate $\int_{A} \int_{A} xy dx dy$, where A is the region bounded by x=2a and the curve x^2 =4ay. [7M]
 - (b) Change the order of integration in $\int_{0}^{1} \int_{x^2}^{2-x} xy \, dy \, dx$ and hence evaluate. [7M]

8. (a) Evaluate
$$\int_{0}^{1} \int_{0}^{1} \frac{dxdy}{\sqrt{(1-x^2)(1-y^2)}}$$
. [7M]

(b) Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} y^2 dy dx$$
 by changing the order of integration. [7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) If $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$ and $r = |\vec{r}|$, prove that $r^n \vec{r}$ is solenoidal of n=-3 and irrotational for all value of n. [7M]
 - (b) Using Green's theorem evaluate $\int_C \left[(x^2 y^2) dx + 2xy dy \right]$ where C is closed curve of the region bounded by $y^2 = x$ and $x^2 = y$. [7M]
- 10. (a) Verify Green's theorem for $\int_{c} (3x^2 8y^2) dx + (4y 6xy) dy$ where C is a boundary of the region bounded by x=0, y=0 and x+y=1. [7M]
 - (b) Evaluate $\int_{C} [xydx + xy^2 dy]$ by Stokes theorem where C is the square in the xy plane with vertices (1,0), (-1,0), (0,1), (0,-1). [7M]

 $-\circ\circ\bigcirc\circ\circ-$