Hall Ticket No							
----------------	--	--	--	--	--	--	--

Question Paper Code: AHSB04

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B. Tech II Semester End Examinations (Regular) - May, 2019

Regulation: IARE – R18

WAVES AND OPTICS

Time: 3 Hours

(Common to EEE | CE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a)	Discuss the de-Broglie's hypothesis of duality of material particles. Describe Davisson and	l
		Germer's experiment to prove the existence of matter waves.	[7M]
	(b)	Calculate the wavelength associated with an electron having energy 2000 eV.	[7M]

- 2. (a) Explain the concept of Black body radiation, Photoelectric effect and Compton effect. [7M]
 - (b) Calculate the energies that can be possessed by a particle of mass 8.50×10^{-31} kg which is placed in an infinite potential box of width 10^{-9} m. . [7M]

$\mathbf{UNIT}-\mathbf{II}$

- 3. (a) Define a semiconductor and draw its band diagram to explain its electronic behavior. Explain the origin of energy band formation in solids. [7M]
 - (b) In Intrinsic semi conductor Si at 300 K, $n_i = 2.4 \ge 10^{19} / m^3$ and mobilities of electron and holes are 0.135 m^2/Vs and 0.048 m^2/Vs . Calculate conductivity of the sample. [7M]
- 4. (a) Distinguish between intrinsic and extrinsic semiconductors. Indicate on an energy level diagram, the conduction and valence bands, donor and acceptor levels for intrinsic and extrinsic semiconductors. [7M]
 - (b) Calculate the density of charge carriers of semiconductor, given the Hall efficient is -6.85×10^{-5} m^3 /Coulomb. [7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Outline the characteristics of laser. Explain construction and working of Ruby laser with neat diagrams. [7M]
 - (b) Calculate the fractional index change for a given optical fiber if the refractive indices of the core and the cladding are 1.563 and 1.498 respectively. [7M]
- 6. (a) Define acceptance angle and numerical aperture. Deduce the expressions for acceptance angle and numerical aperture. [7M]
 - (b) An optical fiber has refractive index of core and cladding 1.48 and 1.45 respectively. Find the acceptance angle in water which has refractive index of 1.33. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- (a) Explain how Newton's rings are formed in reflected light. Derive an expression for diameters of bright and dark rings.
 - (b) In Newton's rings system if the diameter of 4th and 6th dark rings are 3 mm and 3.6 mm, calculate the wavelength of the light used. The radius of curvature of the convex surface of the lens is 0.9 m. [7M]
- 8. (a) What is plane diffraction grating? Explain how it is used to determine the wavelength of a spectral line of a given source of light. [7M]
 - (b) A plane diffraction grating has the value of grating constant equal to 15×10^{-4} cm. Calculate the position of the third order maximum for $\lambda = 2.4 \times 10^{-4}$ cm. [7M]

$\mathbf{UNIT} - \mathbf{V}$

- 9. (a) Define simple harmonic motion. Derive the equation of SHM. [7M]
 - (b) A spring is stretched by 8 cm by a force of 10 N. Find the force constant. What will be the period of 4 kg mass suspended by it? [7M]
- 10. (a) Explain damped oscillation and forced oscillation. [7M]
 - (b) A particle of mass 5 gm executes SHM and has amplitude of 8 cm. If it makes 16 vibrations per second, find its maximum velocity and energy at mean position. [7M] Constants
 Mass of Electron: 9.1 x 10⁻³¹ Kg
 Mass of neutron: 1.676 x 10⁻²⁷ Kg

Mass of neutron: 1.676×10^{-24} Kg Planck's constant: 6.625×10^{-34} joule-seconds

Planck's constant: 0.025 x 10 ° joule-second

Velocity of light: $3 \ge 10^8 \text{ m/s}$

Permittivity of free space: 8.85 x $10^{-12}~{\rm F/m}$

Permeability of free space: $4\pi \ge 10^{-7} \ge A^{-2}$

 $-\circ\circ\bigcirc\circ-$