Hall Ticket No								Question Paper Code: AIT001
	STI	TUTE	EOF	ROI Aut	NA ono	U omo	FIC ous)	

Four Year B.Tech III Semester End Examinations (Supplementary) - July, 2018 Regulation: IARE – R16

DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 Hours

 $(Commo to CSE \mid IT)$

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a)	Define space and time complexity of an algorithm. State the asymptotic notations u	used in
		computing the complexities.	[7M]
	(b)	Illustrate the merge sort algorithm by considering the following numbers 8,3,2,9,7,1,5,4 a	nd
		analyze the time complexity of the algorithm.	[7M]
2.	(a)	Illustrate the multiplication of two matrices of order 2x2 using Strassen's approach.	[7M]
	(b)	Solve the following recurrence relations.	[7M]
		i. $x(n) = x(n-1) + 5f$ or $n > 1$, $x(1) = 0$	

ii. x(n) = 3x(n-1) f or n > 1, x(1) = 4

$\mathbf{UNIT}-\mathbf{II}$

- 3. (a) Write the algorithm to find the depth first search and breadth first search of a graph. [7M]
 - (b) Construct a depth first spanning tree for the below graph shown in Figure 1. [7M]

Figure 1

- 4. (a) Discuss the tree representation of sets. Write and explain the algorithm for union and find operation. [7M]
 - (b) Define articulation points and write the biconnected graph for connected graph. [7M]

$\mathbf{UNIT}-\mathbf{III}$

- 5. (a) With the help of suitable example, explain the Greedy Knapsack? [7M]
 - (b) Find the shortest path between all pairs of nodes in the following graph shown in Figure 2. [7M]

Figure 2

6.	(a) Write a greedy algorithm for the shortest path problem.	[7M]				
	(b) What is the Knapsack problem? Find an optimal solution to Knapsack problem	with $n=7,m=15$				
	$(P1,\ldots,P7)=(10,5,15,7,6,18,3)$ and $(w1,\ldots,w7)=(2,3,5,7,1,4,1)$.					
$\mathbf{UNIT} - \mathbf{IV}$						
-		[m] (]				

7.	(a) Define Hamiltonian cycle's problem. Explain with an example.	[7M]
	(b) Explain FIFO Branch and Bound solution. Illustrate with suitable example.	[7M]
8.	(a) Explain LC Branch and Bound solution with an example.	[7M]
	(b) Define sum of subsets. Solve sum of subsets for $n=6$, $m=30$, W $[1:6] = \{5, 10, 12, 13, 15, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 15, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14$, 18}.
		[7M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a) State Cook's theorem and describe with real time applications.	[7M]
	(b) Describe about clique decision problem. Give suitable example.	[7M]
10.	(a) What is Non-deterministic algorithm for sorting? Give an example.	[7M]
	(b) State and prove that the 3-SAT problem is NP-Complete.	[7M]

 $-\circ\circ\bigcirc\circ\circ-$