Hall Ticket No

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech III Semester End Examinations (Regular) - December, 2017 Regulation: IARE – R16

DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CSE/IT)

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a) Briefly explain the time complexity and space complexity estimation.	[7M]
	(b) Sort the following elements using Merge Sort. $45,22,88,23,78,46,84,44,21,34$.	[7M]
2.	(a) Write and trace the binary search algorithm for searching the element 70 from the list 3,14,27,31,39,42,55,70,74,81,85,93,98. Analyze its worst case time complexity.	t [7 M]
	(b) ALGORITHM Sum(n)	[7M]
	// Input: A nonnegative integer n	
	$S \leftarrow 0$	
	For $i \leftarrow 1$ to n do	
	$\mathbf{S} \leftarrow \mathbf{S} + \mathbf{i}$	
	Return S	
	1. What does this algorithm compute?	
	2. What is basic operation?	

How many times the basic operation is executed?

$\mathbf{UNIT}-\mathbf{II}$

3. (a) Define articulation points and construct a depth first spanning tree for the graph shown in Figure 1 . \$[7M]\$

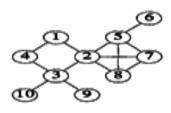


Figure 1

- (b) Write the algorithm to find the depth first search and breadth first search of a graph. [7M]
- 4. (a) Explain about Weighted Union and Collapsing Find using an example. [7M]
 - (b) Write the algorithm for finding the bicomponents of a graph G. [7M]

$\mathbf{UNIT}-\mathbf{III}$

5.	 (a) Explain the Job sequencing with deadlines using following example. N=5 ,profits (p1,p2,,p5)=(20,15,10,5,1),deadlines (d1,d2,d5) = (2, 2, 1, 3, 3). (b) Write an algorithm for optimal binary search tree. 	[7M] [7M]
6.	(a) Explain Kruskal's Algorithm to find Minimum cost Spanning Tree using an example.(b) Write a pseudo code using bottom-up dynamic programming for the knapsack Problem.	[7M] [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) What is graph coloring problem? Discuss in detail the m-coloring graph problem. [7M]
 - (b) Explain how backtracking can be used to solve n-queens problem and obtain one solution to 4-queens problem showing the state space tree. [7M]
- 8. (a) Apply backtracking to find Hamiltonian cycle in the following graph shown in Figure 2 and write the algorithm.

[7M]

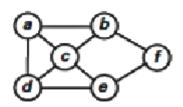


Figure 2

(b) Find the optimal tour of travelling salesman problem for the graph shown in Figure 3 using branch and bound.

[7M]

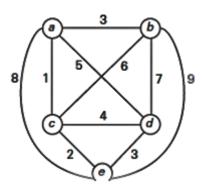


Figure 3

$\mathbf{UNIT}-\mathbf{V}$

9.	(a) State Cook's theorem and explain.	[7M]
	(b) Describe about clique decision problem.	[7M]
10.	(a) Write a brief note on P, NP NP hard and NP complete	[7M]
	(b) Prove that the circuit Satisfactory problem is NP complete	[7M]

 $-\circ\circ\bigcirc\circ\circ-$