Time: 3 Hours	Max Marks: 70				
	(Common to CSE IT)				
	DESIGN AND ANALYSIS OF ALGORITHMS				
B.Tech III Semester End Examinations (Supplementary) - January/February, 2018 Regulation: IARE – R16					
IARE AT	(Autonomous)				
INST	TUTE OF AERONAUTICAL ENGINEERING				
Hall Ticket No	Question Paper Code: AIT001				

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

1.	. (a) Define Ω , θ and O asymptotic notations and discuss their significance.	
	(b) Write the Quick sort algorithm Apply the algorithm to sort the list 5,3,1,9,8,2,4,7.	[7M]
2.	(a) Explain about the Probabilistic analysis with an example.	[7M]
	(b) Describe Strassen's matrix multiplication and derive the time complexity of it.	[7M]

$\mathbf{UNIT}-\mathbf{II}$

3.	(a)	Explain about FIND operation Using Collapsing Rule.	[7M]
	(b)	Write the algorithm to find the depth first search and breadth first search of a graph.	[7M]
4.	(a)	Explain UNION and FIND Operations of Disjoint sets with suitable examples and w algorithms.	rite the [7 M]
	(b)	Define biconnected component? Explain how to identify a biconnected component in graph.	a given [7M]

$\mathbf{UNIT}-\mathbf{III}$

5. (a) Write Kruskal's algorithm and determine the minimum cost spanning tree for the graph as shown in figure 1. [7M]

Figure 1

(b) Discuss the difference between greedy approach and dynamic programming with suitable examples. [7M]

6. (a) Write Dijkstra's algorithm to find single source shortest path. Apply the same to find the shortest path from vertex 'a' in the following graph as shown in figure 2. [7M]

Figure 2

(b) Apply Floyd's algorithm to solve all pair shortest path problem .

[7M]

Figure 3

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Illustrate graph coloring problem and draw the state space tree for n=3 and m=3.
 - (b) What is backtracking? Illustrate the n queen problem with state space tree. [7M]
- 8. (a) Draw and explain the portion of the state space tree for n-queens problem that is generating backtracking. [7M]
 - (b) Solve the problem for travelling salesperson instance defined by cost adjacency matrix. [7M]

(∞	7	3	12	8)
	3	∞	6	14	9	
	5	8	∞	6	18	
	9	3	5	∞	11	
	18	14	9	8	∞)
	UN	III	· _ ·	V		

9.	(a) Explain nondeterministic algorithm for sorting.	[7M]
	(b) Define and explain briefly	[7M]
	i. P Problem	
	ii. NP hard problem	
	iii. NP complete problem	
10.	(a) Discuss in detail the different problems in NP-Hard and NP-Complete.	[7M]
	(b) Explain about chromatic number decision problem.	[7M]

 $-\circ\circ\bigcirc\circ\circ-$