Hall	Ticket	No

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech II Semester End Examinations (Regular/Supplementary) - May, 2018

Regulation: IARE – R16

THEORY OF COMPUTATION

Time: 3 Hours

(Common to ECE | EEE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a) Compare NFA, DFA and Epsilon NFA	[7M]
	(b) Design a DFA to accept all binary strings whose decimal values are divisible by 4.	[7M]
2.	(a) Convert the following ε –NFA to DFA	[7M]

(a) Convert the following ε –NFA to DFA

	ε	А	b	с
->p	{q}	{P}	ϕ	ϕ
q	$\{r\}$	ϕ	{q}	ϕ
*r	ϕ	ϕ	ϕ	{r}

(b) Design NFA for recognizing C Programming language key words such as else, while, for, if, end, int, float. [7M]

$\mathbf{UNIT} - \mathbf{II}$

3.	(a) Construct the NFA for the regular $((a^*+b^*)(a+b))^*$	[7M]	
	(b) Write the regular expression to recognize the valid PAN number	[7M]	
4.	(a) Describe the closure properties of Regular Languages	[7M]	
	(b) Write the right linear grammar for the regular expression $(0+1)^*01$	[7M]	

UNIT - III

5. (a) Give the context free grammar for the following language: $L = \{a^n b^m c^m d^n : | n, m 0\}$ [7M](b) Is the following grammar is in CNF? If not convert the following grammar into CNF: $E \rightarrow E +$ T | F , T \rightarrow T * F | F , F \rightarrow (E) | a [7M]

- 6. (a) Consider the Grammar G=(V, T, E, P) with the following productions
 - $S \rightarrow AaBC$ $B \rightarrow bB \mid bAB \mid b$
 - $C \rightarrow Cb|b$
 - $A \rightarrow aA |a|$

Write the leftmost and rightmost derivation and parse tree for the string belongs to the L(G).

[7M]

(b) Minimize the following Context free grammar $S \rightarrow aBa \mid Aa$ $B \rightarrow abC|D$ $C \rightarrow aaC|c$ $E \rightarrow ab|Ab|b$

$\mathbf{UNIT}-\mathbf{IV}$

[7M]

7. (a) Convert the following grammar to a PDA E -> E + T | F , T T * F | F , F -> (E) | a [7M]
(b) Compare D{DA and NPDA. Give one example for each [7M]

- 8. (a) Explain the following i) PDA accepting through empty stack ii) PDA Accepting through final state [7M]
 - (b) Design a PDA to accept a $aL = wcw^R | w (0+1) * and w^R$ is the reverse of w [7M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a) Define a Turing machine and explain its working principle.	[7M]
	(b) Design a Turing machine that will accept the language L over $\{a, b\}$ where L =	$L = \{a^n b^n\}$
		[7M]
10.	(a) Write a note on Multidimensional Turing machines	[7M]
	(b) Define the following with an example: i) Recursively enumerable languages ii) Recu	ursive languages
		[7M]

 $-\circ\circ\bigcirc\circ\circ-$