Hall	Ticket	No
110011		2.0

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech IV Semester End Examinations (Supplementary) - July, 2018 **Regulation:** IARE – R16 THEORY OF COMPUTATION

Time: 3 Hours

(Common to CSE | IT)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- 1. (a) Define the following terms and give an example for each: i) Language ii) Star closure of a language iii) Non Deterministic Finite Automata (NFA) [7M]
 - (b) Define a Deterministic finite automata (DFA). Design a DFA for the language over $\{1,0\}$ consisting of strings ending with 10.

[7M]

2. (a) Design NFA for recognizing relational operators of C Programming language. [7M](b) Convert the following NFA to DFA. [7M]

Figure 1

UNIT - II

3. (a) Construct the NFA for the regular expression $(a + b)(a^* + b^*)$. [7M]

(b) Give regular expression for the following language L over $\{1,0\}$ where L consists of strings of length multiples of 3. [7M]

- 4. (a) Describe the closure properties of Regular Languages. [7M]
 - (b) Write the right linear grammar for the regular expression $(0+1)^*$. [7M]

UNIT - III

- (a) Give the context free grammar for the following language: $L = \{a^n b^m / n = m+2\}$. 5. [7M]
 - (b) Convert the following grammar into CNF: [7M]S -> aAa | bBb | ε $A \rightarrow C \mid a$ $B \rightarrow C \mid b$ $C \rightarrow CDE \mid \varepsilon$ $D \rightarrow A \mid B \mid ab$

- 6. (a) State and explain with an example pumping lemma theorem for context free languages. [7M]
 - (b) Consider the Grammar G=(V,T,E,P) with the following productions.

 $E \mathrel{\rightarrow} E \mathrel{+} T \mid F, T \mathrel{\rightarrow} T * F \mid F, F \mathrel{\rightarrow} (\ E \) \mid id$

Write the leftmost and rightmost derivation and parse tree for the string $id+id^*id$. Is the grammar ambiguous? [7M]

$$\mathbf{UNIT} - \mathbf{IV}$$

7.	(a) Compare DPDA and NPDA. Give one example for each.	[7M]
	(b) Convert the following grammar to a PDA	[7M]
	$I \to a b Ia Ib I0 I1$ $E \to I E * E E + E (E)$	
8.	(a) Design a NPDA to accept a balanced strings of parentheses.	[7M]

- (b) Explain the following
 - i. PDA accepting through empty stack
 - ii. PDA Accepting through final state.

$\mathbf{UNIT}-\mathbf{V}$

[7M]

9.	(a) Define a Turing machine and with a neat diagram, explain its working principle. [7M]
	(b) Design a Turing machine that will accept the language L over $\{a, b\}$ where $L = \{a^n b^n c^n\}$. $ n $	$\geq 0.$
	[7M]
10.	(a) List the different types of languages and show the relationship using chomsky hierarchy. [7M]
	(b) Define the following with an example: [7M]
	i. Recursively enumerable languages	
	ii. Recursive languages	
	iii. Universal languages	

 $-\circ\circ\bigcirc\circ\circ-$