Hall	Ticket	No
man	TICVER	110

Question Paper Code: AIT004

IARE LINE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Four Year B.Tech V Semester End Examinations (Regular) - November, 2019

Regulation: IARE – R16

COMPILER DESIGN

Time: 3 Hours

(Common to CSE | IT)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a) Explain the need for dividing the compilation process into various phases and explain its functions.					
			[7M]			
	(b)	Write down the algorithm to eliminate left recursion and left factoring with example.	[7M]			
2.	(a)	Describe the error recovery schemes in the lexical phases of a compiler	[7M]			
	(b)	Construct the predictive parser for the following grammar:				
		S \rightarrow a / \uparrow / (T)				
		$T \rightarrow T, S / S$				
		Show the behavior of the parser in the sentences,				
		i) (a,(a,a))				
		ii) $(((a, a), \uparrow, (a), a))$	[7M]			
	$\mathbf{UNIT} - \mathbf{II}$					
3.	(a)	Define LR parsing and explain the parts of LR parser.	[7M]			
	(b)	Construct CLR parsing table for the following grammar				
	. ,	$S \rightarrow CC$				
		$C \rightarrow aC d$	[7M]			
4.	(a)	Explain conflicts during shift reduce parsing.	[7M]			
	(b)	Explain error recovery for the following grammar				
	. ,	$E \rightarrow E + E \mid E^*E \mid (E) \mid id$	[7M]			
	$\mathbf{UNIT} - \mathbf{III}$					
5.	(a)	What are three address codes? What is its type? How it is implemented. Explain wit	th an			
	. ,	example	[7M]			
	(b)	Write down the translation scheme to generate three address code for the Boolean expression	ion.			
			[7M]			
6.	(a)	Explain the evaluation of S-attributed and L-attributed definitions	[7M]			
	(b)	Generate the three address code and draw the abstract tree for the following expressions. i) $(x-y)^*z+m-n$				

ii) $a+(b-c)+(b+c)^*(a^*e)$ [7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a) Discuss in details about storage allocation strategies.	[7M]		
	(b) Explain in detail about the various operation and implementation forms of symbol table.	[7M]		
8.	(a) Differentiate explicit and implicit allocation of memory to variables?	[7M]		
	(b) Illustrate the dynamic storage allocation techniques.	[7M]		
$\mathbf{UNIT} - \mathbf{V}$				
9.	(a) Explain in detail about the various representation loops in Flow Graph.	[7M]		
	(b) Draw the DAG for the following statements			
	prod = 0;			
	i = 1;			
	do			
	{			
	prod = prod + a[i] x b[i];			
	i = i + 1;			
	while (i <= 10) ;	[7M]		
10.	(a) Explain code generation phase with simple code generation algorithm with example.	[7M]		

(b) Discuss the principle sources of optimization with examples.

[7M]