Question	Paper	Code	$\Delta ME003$
Question	Paper	Code:	AME005

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.Tech III Semester End Examinations (Regular) - December, 2017 Regulation: IARE – R16 THERMODYNAMICS

(Mechanical Engineering)

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

- 1. (a) Derive an expression for the non-flow displacement work done during adiabatic process given by $PV^{\gamma} = C$, where $\gamma = C_p/C_v$ [7M]
 - (b) A closed system undergoes two processes one after the other-constant pressure process at pressure of 5 bar from initial volume of $0.03 m^3$ to $0.09 m^3$ it is followed by polytropic expansion. $PV^{1.3}=C$ from $0.09 m^3$ volume to $0.02 m^3$ final volume find [7M]
 - i. Final pressure after expansion
 - ii. Work done during each process and net work done
- 2. (a) Explain Joules experiment with reference to PMM1.
 - (b) Air flows steadily at the rate of 0.4 kg/s through an air compressor, entering at 6 m/s with a pressure of 1 bar and a specific volume of $0.85 m^3/\text{kg}$, and leaving at 4.5 m/s with a pressure of 6.9 bar and a specific volume of $0.16 m^3/\text{kg}$. The internal energy of the air leaving is 88 kJ/kg greater than that of the air entering. Cooling water in a jacket surrounding the cylinder absorbs heat from the air at the rate of 59 W. Calculate the power required to drive the compressor and the inlet and outlet cross-sectional areas. [8M]

$\mathbf{UNIT} - \mathbf{II}$

- 3. (a) Distinguish between heat engine and heat pump.
 - (b) Two reversible heat engines A and B are arranged in series, A rejecting heat directly to B. Engine A receives 200 kJ at a temperature of 421°C from a hot source, while engine B is in communication with a cold sink at a temperature of 4.4°C. If the work output of A is twice that of B, find **[9M]**
 - i. The intermediate temperature between A and B
 - ii. The efficiency of each engine
 - iii. The heat rejected to the cold sink
- 4. (a) What is Carnot's cycle? Explain in detail with relevant sketches and processes. [6M]
 - (b) Two kg of water at 80°C are mixed adiabatically with 3kg of water at 30°C in a constant pressure process of 1 atmosphere. Find the increase in entropy of the total mass of water due to mixing process.
 [8M]

[6M]

[5M]

EU TARE O

Hall Ticket No

UNIT - III

- 5. (a) Draw the phase equilibrium diagram for pure substance on h-s plot with relevant constant property lines and why the isobars lines are diverges from one another? [7M]
 - (b) A vessel of volume 0.04 m^3 contains a mixture of saturated water and saturated steam at a temperature of 250°C. The mass of the liquid present is 9 kg. Find pressure, the specific volume, the enthalpy, the entropy. [7M]
- 6. (a) Derive an expression for the Vander Walls constants 'a' and 'b' in terms of critical properties.
 - (b) 1 kg of CO_2 has a volume of 0.86 m^3 at 120°C. Compute the pressure using i) Ideal gas equation [7M]ii) Vander Wall's Equation Take Vander Wall's constant for CO_2 , a = 365.6 kNm⁴/(kg mole)² and b = 0.0423 m³/(kg mole)

$\mathbf{UNIT} - \mathbf{IV}$

- 7. (a) Define mole fraction and mass fraction.
 - (b) 0.5 kg of helium and 0.5 kg of nitrogen are mixed at 20°C and at a total pressure of 100 kPa. Find [10M]
 - (i) the mole fraction of each constituent
 - (ii) Equivalent molecular weight of the mixture
 - (iii) the equivalent gas constant of mixture
 - (iv) the partial pressures and volumes
 - (v) C_p and C_v of the mixture.
- 8. (a) Explain
 - (i) Dew point temperature
 - (ii) Degree of saturation
 - (iii) Adiabatic saturation process
 - (b) An air water vapour mixture enters an adiabatic saturator at 30°C and leaves at 20°C, which is the adiabatic saturation temperature. The pressure remains constant at 100kPa. Determine the relative humidity and the humidity ratio of the inlet mixture. [7M]

$\mathbf{UNIT} - \mathbf{V}$

- 9. (a) For the same compression ratio and heat rejection, which cycle is most efficient; Otto, diesel or dual? Explain with P-V and T-S diagrams. [7M]
 - (b) An ideal diesel cycle with air as the working fluid has a compression ratio of 18 and a cut-off ratio of 2. At the beginning of compression, the air is at 100kPa, 27° C and 1917 cm^3 . Determine
 - (i) the pressure and temperature of air at each point [7M]
 - (ii) the net work and thermal efficiency

[4M]

[7M]

[7M]

- 10. (a) Derive air standard efficiency of Brayton cycle with P-V and T-S diagram
 - (b) An air refrigeration open system operating between 1 mpa and 100 kpa is required to produce cooling effect of 2000 kJ/min. the temperature of air leaving the cold chamber is -5°C and at leaving the cooler is 30°C. Neglecting losses and clearance in the compressor and expander determine [7M]
 - i) Mass of air circulated per hour
 - ii) Compressor work, expander work, cycle work
 - iii) Coefficient of performance and power required to run the machine

 $-\circ\circ\bigcirc\circ\circ-$