Hall Ticket I	No Question I	Paper Code:AME553
	INSTITUTE OF AERONAUTICAL ENGINEER	ING
TARE S	(Autonomous)	
FOR	B.Tech VI Semester End Examinations (Regular) - May, 2019	
	$ {\bf Regulation: \ IARE-R16} $	
	INTRODUCTION TO ROBOTICS	
Time: 3 Hour	s (AE)	Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

- 1. (a) What is industrial automation? Outline the types of industrial automation with examples.[7M]
 - (b) Discuss the classification of robots based on coordinate system with their applications.

[7M]

2.	(a)	Point out the importance of automation in industries and justify the necessity of robots to achieve
		the automation. [7M]
	(b)	What are the various factors in gripper's selection and design? Explain.

[7M]

$\mathbf{UNIT}-\mathbf{II}$

3.	(a) Explain about assigning the frame for end effector a neat sketch.	[7M]
	(b) Define world coordinates of a robot. Deduce rotation matrix for fixed angle representation.	[7M]
4.	(a) Deduce the forward and inverse kinematics expressions for a 3 link system.	[7M]
	(b) Define and illustrate the link and joint parameters. Explain their uses. Point out the role of	of D-H
	notations in the analysis of robots.	[7M]

$\mathbf{UNIT}-\mathbf{III}$

5. (a) Explain the Lagrange Euler's formulation for robot arm. [7M]
(b) Derive the torque at joints for the following robot arm as shown in Figure 1 using LE Formulation. [7M]

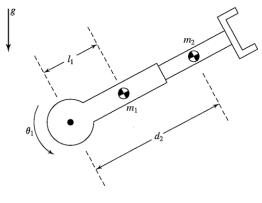


Figure 1

- 6. (a) Explain the static force analysis of robot manipulator with the help of jacobian matrix. [7M]
 - (b) Deduce the equation of motion for a single link manipulator given the mass and length of the link. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a)	Differentiate straight line motion and joint interpolated motion of a robot.	[7M]
	(b)	A robot is designed to perform loading and unloading work parts from a CNC machine.Lis the necessary actuators and explain the working principle.	t out [7M]
8.	(a)	Write a short note on slew motion and join interpolated motion.	[7M]
	(b) Determine the time required for each joint of a three-axis RRR manipulator to travel the follow		owing

(b) Determine the time required for each joint of a three-axis RRR manipulator to travel the following distances using slew motion; joint 1, 100^{0} ; joint 2, 30^{0} ; and joint 3, 60^{0} . All joints travel at a rotation velocity of 15^{0} /s. [7M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a) Explain with a neat diagram about Hydraulic Actuator.	[7M]
	(b) Explain function of robots in assembly and inspection. Explain pick-and-place rol chining operation of plastic moulding.	pots for ma- [7M]
10.	(a) Compare benefits and drawbacks of Pneumatic, hydraulic and electric actuators.	[7M]
	(b) Describe sensors used in robotic arc welding. Explain various assembly systems configuration.	

[7M]

 $-\circ\circ\bigcirc\circ\circ-$