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UNIT-I
MATRIX METHODS OF ANALYSIS

INTRODUCTION:
Indeterminate structures are being widely used for its obvious merits. It may be recalled that,

in the case of indeterminate structures either the reactions or the internal forces cannot be
determined from equations of statics alone. In such structures, the number of reactions or the
number of internal forces exceeds the number of static equilibrium equations. In addition to
equilibrium equations, compatibility equations are used to evaluate the unknown reactions
and internal forces in statically indeterminate structure. In the analysis of indeterminate
structure it is necessary to satisfy the equilibrium equations (implying that the structure is in
equilibrium) compatibility equations (requirement if for assuring the continuity of the
structure without any breaks) and force displacement equations (the way in which
displacement are related to forces). We have two distinct method of analysis for statically
indeterminate structure depending upon how the above equations are satisfied:

1. Force method of analysis (also known as flexibility method of analysis, method of

consistent deformation, flexibility matrix method)
2. Displacement method of analysis (also known as stiffness matrix method).

In the force method of analysis, primary unknown are forces. In this method compatibility
equations are written for displacement and rotations (which are calculated by force
displacement equations). Solving these equations, redundant forces are calculated. Once the
redundant forces are calculated, the remaining reactions are evaluated by equations of
equilibrium. In the displacement method of analysis, the primary unknowns are the
displacements. In this method, first force -displacement relations are computed and
subsequently equations are written satisfying the equilibrium conditions of the structure.
After determining the unknown displacements, the other forces are calculated satisfying the
compatibility conditions and force displacement relations. The displacement-based method is
amenable to computer programming and hence the method is being widely used in the
modern day structural analysis. In general, the maximum deflection and the maximum

stresses are small as compared to statically determinate structure.

Two different methods can be used for the matrix analysis of structures: the flexibility
method, and the stiffness method. The flexibility method, which is also referred to as the

force or compatibility method, is essentially a generalization in matrix form of the classical
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method of consistent deformations. In this approach, the primary unknowns are the redundant
forces, which are calculated first by solving the structure’s compatibility equations. Once the
redundant forces are known, the displacements can be evaluated by applying the equations of
equilibrium and the appropriate member force—displacement relations.

CLASSIFICATION OF FRAMED STRUCTURES

Framed structures are composed of straight members whose lengths are significantly larger
than their cross-sectional dimensions. Common framed structures can be classified into six
basic categories based on the arrangement of their members, and the types of primary stresses
that may develop in their members under major design loads.

Plane Trusses

A truss is defined as an assemblage of straight members connected at their ends by flexible
connections, and subjected to loads and reactions only at the joints (connections). The
members of such an ideal truss develop only axial forces when the truss is loaded. In real
trusses, such as those commonly used for supporting roofs and bridges, the members are
connected by bolted or welded connections that are not perfectly flexible, and the dead
weights of the members are distributed along their lengths. Because of these and other
deviations from idealized conditions, truss members are subjected to some bending and shear.
However, in most trusses, these secondary bending moments and shears are small in
comparison to the primary axial forces, and are usually not considered in their designs. If
large bending moments and shears are anticipated, then the truss should be treated as a rigid
frame (discussed subsequently) for analysis and design. If all the members of a truss as well
as the applied loads lie in a single plane, the truss is classified as a plane truss. The members
of plane trusses are assumed to be connected by frictionless hinges. The analysis of plane
trusses is considerably simpler than the analysis of space (or three-dimensional) trusses.
Fortunately, many commonly used trusses, such as bridge and roof trusses, can be treated as

plane trusses for analysis.

Plane Truss
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Beams

A beam is defined as a long straight structure that is loaded perpendicular to its longitudinal
axis. Loads are usually applied in a plane of symmetry of the beam’s cross-section, causing

its members to be subjected only to bending moments and shear forces.

Plane of
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Space Trusses

Some trusses (such as lattice domes, transmission towers, and certain aerospace structures
cannot be treated as plane trusses because of the arrangement of their members or applied
loading. Such trusses, referred to as space trusses, are analysed as three-dimensional
structures subjected to three dimensional force systems. The members of space trusses are
assumed to be connected by frictionless ball-and-socket joints, and the trusses are subjected
to loads and reactions only at the joints. Like plane trusses, the members of space trusses

develop only axial forces.

Space Trusses

Grids

A grid, like a plane frame, is composed of straight members connected together by rigid
and/or flexible connections to form a plane framework. The main difference between the two
types of structures is that plane frames are loaded in the plane of the structure, whereas the

loads on grids are applied in the direction perpendicular to the structure’s plane. Members of
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grids may, therefore, be subjected to torsional moments, in addition to the bending moments
and corresponding shears that cause the members to bend out of the plane of the structure.
Grids are commonly used for supporting roofs covering large column-free areas in such

structures as sports arenas, auditoriums, and aircraft hangars.

Grid

Space Frames

Space frames constitute the most general category of framed structures. Members of space
frames may be arranged in any arbitrary directions, and connected by rigid and/or flexible
connections. Loads in any directions may be applied on members as well as on joints. The
members of a space frame may, in general, be subjected to bending moments about both

principal axes, shears in principal directions, torsional moments, and axial forces.

i "'.'_

Space Frame
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Plane Frames

Frames, also referred to as rigid frames, are composed of straight members connected by
rigid (moment resisting) and/or flexible connections. Unlike trusses, which are subjected to
external loads only at the joints, loads on frames may be applied on the joints as well as on
the members. If all the members of a frame and the applied loads lie in a single plane, the
frame is called a plane frame. The members of a plane frame are, in general, subjected to
bending moments, shears, and axial forces under the action of external loads. Many actual
three-dimensional building frames can be subdivided into plane frames for analysis.
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FUNDAMENTAL RELATIONSHIPS FOR STRUCTURAL ANALYSIS
Structural analysis, in general, involves the use of three types of relationships:
e Equilibrium equations,

e Compatibility conditions and

e Co-ordinate systems.

Equilibrium Equation

A structure is considered to be in equilibrium if, initially at rest, it remains at rest when
subjected to a system of forces and couples. If a structure is in equilibrium, then all of its
members and joints must also be in equilibrium. Recall from statics that for a plane (two-
dimensional) structure lying in the XY plane and subjected to a coplanar system of forces and

couples, the necessary and sufficient conditions for equilibrium can be expressed in Cartesian
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(XY) coordinates. These equations are referred to as the equations of equilibrium for plane
structures. For a space (three-dimensional) structure subjected to a general three dimensional
system of forces and couples (Fig. 1.12)

The equations of equilibrium are expressed as
FX=0,FY=0and FZ=0
MX=0,MY =0and MZ=0

For a structure subjected to static loading, the equilibrium equations must be satisfied for the
entire structure as well as for each of its members and joints. In structural analysis, equations
of equilibrium are used to relate the forces (including couples) acting on the structure or one

of its members or joints.
Compatibility Conditions

The compatibility conditions relate the deformations of a structure so that its various parts
(members, joints, and supports) fit together without any gaps or overlaps. These conditions
(also referred to as the continuity conditions) ensure that the deformed shape of the structure
is continuous (except at the locations of any internal hinges or rollers), and is consistent with
the support conditions. Consider, for example, the two-member plane frame. The deformed
shape of the frame due to an arbitrary loading is also depicted, using an exaggerated scale.
When analysing a structure, the compatibility conditions are used to relate member end
displacements to joint displacements which, in turn, are related to the support conditions. For
example, because joint 1 of the frame is attached to a roller support that cannot translate in
the vertical direction, the vertical displacement of this joint must be zero. Similarly, because
joint 3 is attached to a fixed support that can neither rotate nor translate in any direction, the

rotation and the horizontal and vertical displacements of joint 3 must be zero.

GLOBAL AND LOCAL COORDINATE SYSTEMS

In the matrix stiffness method, two types of coordinate systems are employed to specify the
structural and loading data and to establish the necessary force—displacement relations. These

are referred to as the global (or structural) and the local (or member) coordinate systems.
Global Coordinate System

The overall geometry and the load—deformation relationships for an entire structure are

described with reference to a Cartesian or rectangular global coordinate system. When
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analyzing a plane (two-dimensional) structure, the origin of the global XY coordinate system
can be located at any point in the plane of the structure, with the X and Y axes oriented in any
mutually perpendicular directions in the structure’s plane. However, it is usually convenient
to locate the origin at a lower left joint of the structure, with the X and Y axes oriented in the
horizontal (positive to the right) and vertical (positive upward) directions, respectively, so

that the X and Y coordinates of most of the joints are positive.

Local Coordinate System

Since it is convenient to derive the basic member force—displacement relationships in terms
of the forces and displacements in the directions along and perpendicular to members, a local

coordinate system is defined for each member of the structure.
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DEGREES OF FREEDOM

The degrees of freedom of a structure, in general, are defined as the independent joint
displacements (translations and rotations) that are necessary to specify the deformed shape of
the structure when subjected to an arbitrary loading. Since the joints of trusses are assumed to
be frictionless hinges, they are not subjected to moments and, therefore, their rotations are
zero. Thus, only joint translations must be considered in establishing the degrees of freedom
of trusses. The deformed shape of the truss, for an arbitrary loading, is depicted in using an
exaggerated scale. From this figure, we can see that joint 1, which is attached to the hinged

support, cannot translate in any direction; therefore, it has no degrees of freedom. Because
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joint 2 is attached to the roller support, it can translate in the X direction, but not in the Y
direction. Thus, joint 2 has only one degree of freedom, which is designated d1 in the figure.
As joint 3 is not attached to a support, two displacements (namely, the translations d2 and d3
in the X and Y directions, respectively) are needed to completely specify its deformed
position 3. Thus, joint 3 has two degrees of freedom. Similarly, joint 4, which is also a free
joint, has two degrees of freedom, designated d4 and d5.

Static Indeterminacy of Structures

If the number of independent static equilibrium equations (refer to Section 1.2) is not
sufficient for solving for all the external and internal forces (support reactions and member
forces, respectively) in a system, then the system is said to be statically indeterminate. A
statically determinate system, as against an indeterminate one, is that for which one can
obtain all the support reactions and internal member forces using only the static equilibrium
equations. For example, idealized as one-dimensional, the number of independent static
equilibrium equations is just 1 while the total numbers of unknown support reactions aretwo,
that is more than the number of equilibrium equations available. Therefore, the system is
considered statically indeterminate. The following figures illustrate some example of

statically determinate and indeterminate structures.

(a) ; (b)

Statically determinate structures
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the equilibrium equations are described as the necessary and sufficient conditions to maintain
the equilibrium of a body. However, these equations are not always able to provide all the
information needed to obtain the unknown support reactions and internal forces. The number
of external supports and internal members in a system may be more than the number that is
required to maintain its equilibrium configuration. Such systems are known as indeterminate
systems and one has to use compatibility conditions and constitutive relations in addition to
equations of equilibrium to solve for the unknown forces in that system. For an indeterminate
system, some support(s) or internal member(s) can be removed without disturbing its
equilibrium. These additional supports and members are known as redundants. A determinate
system has the exact number of supports and internal members that it needs to maintain the
equilibrium and no redundants. If a system has less than required number of supports and
internal members to maintain equilibrium, then it is considered unstable. For example, the
two-dimensional propped cantilever system in (Figure 1.13a) is an indeterminate system
because it possesses one support more than that are necessary to maintain its equilibrium. If
we remove the roller support at end B (Figure 1.13Db), it still maintains equilibrium. One
should note that here it has the same number of unknown support reactions as the number of

independent static equilibrium equations.

S =0
ZF.I':O

Z A (about any pomnt ) =0

\
"
P

7 77

(@ (&)

Statically indeterminate structures

10| Page




An indeterminate system is often described with the number of redundants it contains and this
number is known as its degree of static indeterminacy. Thus, mathematically:

Degree of static indeterminacy = Total number of unknown (external and internal)

forces - Number of independent equations of equilibrium

It is very important to know exactly the number of unknown forces and the number of
independent equilibrium equations. Let us investigate the determinacy/indeterminacy of a
few two-dimensional pin-jointed truss systems. Let m be the number of members in the truss
system and n be the number of pin (hinge) joints connecting these members. Therefore, there
will be m number of unknown internal forces (each is a two-force member) and 2 n numbers
of independent joint equilibrium equations (and for each joint, based on its free body

diagram). If the support reactions involve r unknowns, then:

Total number of unknown forces =m +r
Total number of independent equilibrium equations =2 n

So, degree of static indeterminacy =(m+r)-2n

Determinate truss

m =17, n =10, and r = 3. So, degree of static indeterminacy = 0, that means it is a statically
determinate system.

(Internally) indeterminate truss

m =18, n =10, and r = 3. So, degree of static indeterminacy = 1.
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Kinematic Indeterminacy of Structures

A structure is said to be kinematicaly indeterminate if the displacement components of its
joints cannot be determined by compatibility conditions alone. In order to evaluate
displacement components at the joints of these structures, it is necessary to consider the
equations of static equilibrium. i.e. no. of unknown joint displacements over and above the

compatibility conditions will give the degree of kinematic indeterminacy.

We have seen that the degree of static indeterminacy of a structure is, in fact, the number of
forces or stress resultants which cannot be determined using the equations of static
equilibrium. Another form of the indeterminacy of a structure is expressed in terms of
its degrees of freedom; this is known as the kinematic indeterminacy, nk, of a structure and is
of particular relevance in the stiffness method of analysis where the unknowns are the

displacements.

A simple approach to calculating the kinematic indeterminacy of a structure is to sum the
degrees of freedom of the nodes and then subtract those degrees of freedom that are
prevented by constraints such as support points. It is therefore important to remember that in
three-dimensional structures each node possesses 6 degrees of freedom while in plane

structures each node possesses three degrees of freedom.

For determinate structures, the force method allows us to find internal forces (using
equilibrium i.e. based on Statics) irrespective of the material information. Material (stress-
strain) relationships are needed only to calculate deflections. However, for indeterminate
structures, Statics (equilibrium) alone is not sufficient to conduct structural analysis.

Compatibility and material information are essential.

Fixed beam
Kinematicaly determinate

Simply supported beam Kinematicaly indeterminate
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5 Any joint — Moves in three directions in a plane structure
jL b Two displacements éx in x direction, dy in y direction, €
rf e rotation about z axis as shown.
I
?f Sy=0
|
I."'*"\ir_ i B Roller Support :
;;&Ej - r=1,3y=0,0 &dx exist — DOF = 2 g=
A é'u =0
"
"l B ;
s Sx=¢ Hinged Support :
LAY g r=2,5x=0,3y=0,0exists—DOF =1 e =2
il E 'n.II —~ C:
I - Fixed Support :
Vg du=h . %
4 r Sk r=3,6x=0,8y=0,6=0 DOF=0 e=3
£ =
6=0

Reaction components prevent the displacements no. of restraints = no. of reaction

components.
Degree of kinematic indeterminacy:
Pin jointed structure: Every joint — two displacements components and no rotation

S Dk=2j—e where, e = no. of equations of compatibility
= no. of reaction components

Rigid Jointed Structure:

Every joint will have three displacement components, two displacements and one rotation.
Since, axial force is neglected in case of rigid jointed structures, it is assumed that the
members are inextensible & the conditions due to inextensibility of members will add to the

numbers of restraints. i.e to the ‘e’ value.

S Dk=3j-e where, e = no. of equations of compatibility
= no. of reaction components +
constraints due to in extensibility
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Example 1 : Find the static and kinematic indeterminacies
r=4,m=2)=3

= ﬂ‘lfr——— — _'*_ -
T o fos
! L i
I
r - Bz
X -

=3x2+4)-3x3=1
Dk=3j-e
=3x3-6=3
1.e. rotations at A B_ & C 1.e. Oa. 6b & 6¢c
are the displacements.
(e =reaction components + mextensibility conditions =4 + 2 =6)

Force-Displacement Relationship

Force(P) 2 Stiffness (k)

Deflectioniu)

Consider linear elastic spring as shown in Fig. Let us do a simple experiment. Apply a force
at the end of spring and measure the deformation. Now increase the load to and measure the
deformation. Likewise repeat the experiment for different values of load. Result may be
represented in the form of a graph as shown in the above figure where load is shown on -axis

and deformation on abscissa. The slope of this graph is known as the stiffness of the spring
and is represented by and is given by
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The spring stiffness may be defined as the force required for the unit deformation of the
spring. The stiffness has a unit of force per unit elongation. The inverse of the stiffness is
known as flexibility. It is usually denoted by and it has a unit of displacement per unit force.

1
,:;r:; P =ku

SNo. TBype of displacement, A Flexibility, § Stiffness, k
L. Axial L AE
AE L
2. Transverse
3
(2) Far-end fixed L 12E1
12E7 i
3
(b) Far-end hinged L 3E1
3E7 I
3. Bending or flexural
(a) Far-end fixed L 4EI
4E] L
(b) Far-end hinged L 3EI
3EI I
4. Torsional L K
GK 7.
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Step Force method
(flexbility or compatibility
method)

Displacement method
(stiffness or equilibrium
method)

. Determine the degree of static indeter-
minacy (degree of redundarncy), n,

. Choose the redundants.

- Assign coordinates 1, 2, ..., n to the
redundants,

- Remove all the redundants to obtain the
released structipe.

- Determine [A,], the displacements at
the coordinates due to the applied loads
acting on the released structure.

- Determine [A), the displacements at
the coordinates due to the redundants
acting on the released structure.

- Compute the net displacements at the

coordiantes,
LA =[A]+ [Ag]

. Use the condtions of compatiblility of dis-

placements to compute the reduntands.
[P =[S AHALD)

. Knowing the reduadants, compute the
intexrral member florces by using equa-
tions of statics,

Determine the degree of kinematic in-
determinacy, (degree of freedom), n.

Identify the independent displacement
components.

Assign coordinates 1, 2, ..., n to the in-
dependent displacereent components.
Prevent all the independent displacement

components to obtain the restrained
structure.

Determine [P’], the forces reqyired at the
coordinates in the restrained structure
due to the loads ether than those acting
at the coordinates.

Determine [P,], the forces required at
the coordinates in the unrestrained
structure to cause the independent
displacement components [A].

Compute the net forces at the coordinates.
C PI=IP]+ (P

Use the conditions of cquilibrium of
forces 1o compute the displacements.

[Al=[kIM[PY-[P)

Krnowing the displacements, compute the
internal member forces by using skope-
deflection equations.
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Examples:

Determine the degree of static indeterminacy of the pin-jointed plane frame shown in
Fig. 1.8.

Solution
Total number of independent extemal reaction components,
r=2+1+1=4
Using Eq. (1.7), degree of external indeterminaéy,
D,=4-3=1
Number of joints, j = 16
Actual number of members, m = 35

Using Eq. (1.8), minimum number of members required to preserve geometry of
the frame,

m =2x16-3=29
Using Eq. (1.10), degree of internal indeterminacy,

D,=35-29=6
Hence, degree of static indeterminacy

D =D _+D;=1+6=7
Alternatively, the degree of static indeterminacy may be computed using Eq. (1.16).
Substituting

m=35 r=4 j=16

into Eq. (1.16)
D,=35+44-2x16=7
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Determine the degree of static indeterminacy of the rigid-jointed plane frame shown in
Fig. 1.9.

Solution
Total number of independent external reaction components,
' r=2x3+2+1=9
Using Eq. (1.7), degree of external indeterminacy,
B_=9-3=6

The number of cuts required Lo obtain an open r _T

configuration, ¢ = 12. For Instance, cuts may be made

in all the bearms except in the topmost beams. Using

Eq. (1.12), degree of internal indeterminacy
Di=3x%x12=3p

Hence, degree of static jndeterminacy, —
D =D, +D,;

=0+36=42
Alternatively, the degree of static indeterminacy may 77J
be compated using Eq. (1.18). Substituting & 7& 7§7 T
) m = 35
r=29 .
=24 Fig. 1.9

into Eq. {1.18),
D =3x35+9_3x24=42

Determine the degiee of static indeterminacy of the bow-string girder shown in F. ig. 1.10.
Assume all joints to be rigid.

Fig. 1.10

Solution

Total number of independent external reaction components, r = 3. Degree of external
indeterminacy, '

D,=3-3=0
The number of cuts required to obtain an open configuration, ¢ = §, For instance, a cut
may be made in the horizontal member in each cell. Using Eq. (1.12), degree of internal
indeterminacy,

D, =3x8=24
Hence, degree of static indeterminacy,

Dy=D,+D,=0+24=24 :
Alternatively, the degree of static indeterminacy may be computed using Eq. (1.18).
Substuting - :
m=123 r=3 j=1¢
into Eq. (1.18),

D, =3x2343-3x16=24
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De;erhine the degree of static indeterminacy of the rigid-jointed building frame shown
in Fig. 1.13(a).

Solution
Total number of independent extermnal reaction components,

r=6x6=36 ) !

/\l J)_ | 4 8 ° 10
L}— 5| | .4122 :_)4 1?

. T 17 7T ¢
/ : 11 13
#
Z8

;R}ﬁ Wﬁ? Sk "B o
T e A

(a) ' (b)

Fig. 1.13

Degree of extemal indeterminacy,
D,.=36-6=30
Number of culs required to obtain an open configuration, ¢ = 16 [Fig. 1.13(b)].
Using Eg. (1.13), degree of internal indeterminacy,
- D; =6x16=96
" Hence, degree of static indeterminacy of the frame,
D, =D, +D;=30+96=126
Alternatively, the degree of static indeterminacy may be computed using Eq. (1.19).
Suobstitating
m=39 r=36 j=24
into Eq. (1.19),
D o=6%x39+36-6x24=126

Deavelop th:e stiffness matrix for the end-loaded prismatic member AB with reference to
the coordinates shown in Fig. 4.4(a).

' ' Comment on the relevance of the chosen
coordinates. Examine the reciprocity of the stiffness matrix.

® @

T T : : BE/ 6E!

T - ® ad — M,
Ef Constant @ ﬂﬁ\;{z,ﬂ éll,:'f
T cEl

(@) (b) "

7
@\
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BEKL2 SEYL 12E4L? 12E0L3
[N /
BN Y 4fm 6EUL2 6ENL2
(c) (d)
12EH18 12E0113 1] 0
s 4 As=1
rl PRt 4
0— 1—3 AEIL & £ :}——AE;'L
- BEWLZ BENI? ) 0 0
(e} ()
0 0
AEIL = ﬁ |/a a—»- AEIL
0 Ag=1 0

The stiffness matrix of the member can be developed by giving a unit displacement
successively at each coordjnate without any displacement at other coordinates. The
forces at coordinates 1 to 6, when a unit displacement is given successively at each of
the coordinates 1 to 4, may be computed by using the equations given in Sec. 2.14. For
example, when a unit displacement is given at coordinate 1, the forces at coordinates 1
to 6, which constitute the elements of the first column of the stiffnes matrix, are

ky = i? kyy = %

_ BEI GEI
kyy = 2 41 = _LT
ksy = kg =0 '

Similarly, the elements of the second, third and fourth colamms of the stiffness matrix
can be determined.

When a unit displacement is given at coordinate 5 without any displacement at
other coordinates, the forces evidently are '

k|5=k:5=k35=k45=0 kss= 'E

These forces coastitute the elements of the fifth columm of the stiffness mateix. The
sixth column of the stiffness matrix may be generated in a stmlar manner by giving a
unit dispfacement at coordinate 6. -
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The deformed shape of the member, when unit displacement is given succesively at
coordinates 1 to 6, together with the resulting forces required to sustain the deformed
shape of the member, are shown in the free-boy diagrams in Fig. 4.4(b) to (g). Thus the
sﬁffrlesrs matrix of member AB with reference to the chosen coordinates may be written as

[ 4FE7 2EI 6EI 6El
il et - — — 0 0
L L L L
2Er 4E] GE/! 6E]
el = -— — 0 0
L L L L
6El GEI 12EI 12E1
e 2P ¢ 0
(] = (4.27)
6EI 6EI 12E1 12E1
I r P I 0 0
0 0 0 o 4B _2E
L L
o 0 o o -AE AE
L L L |
where A = area of cross-section of the member
L = length of the member.
Two steel bars AB and BC, each having a cross- @ @
C

sectional area of 20 mny’, are connected in series A % B,

as shown in Fig. 4.10. Develop the flexibility and

stiffness matrices with reference to coordinates 1 [-11—'5-[‘4—2L>-|
and 2 shown in the figure. Verify that the two -

matrices are the invervse of eachy other. Take E = Fig. 4.10
200 kN/mm®. i
Solution
L 1000
ial flexibility of = = = 0.25 mun/kN
Axial flextbility of bar AB = 200 = 55 % 200
] . AE
Axial stiffness of bar AB = —L-' = 4 kN/mm
L 2000
i ibihi = = = 05 mm/kN
Axial flexibility of bar BC AE - 20 % 200

AE
Axial stiffness of bar BC = T = 2 kKN/mm
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ibili i i it force successively at
The flexibility matrix can be developed by applying a unit
coordinates 1 and 2 and evaluating the displacements at coordinates 1 and 2. To generate
the first column of the flexibility matrix, apply 2 unit foree ak coerdinate . The
displacements at coordinates 1 and 2 are

0y = &, =025 mm

Similarly, to generate the second column of the flexibility matrix, apply a unit force
at coordinate 2. The displacements at coordinates 1 and 2 are

6[2 = 0.25 mimn
6y, = 025+ 0.5 =0.75 mm
r
Hence, the required flexibility matrix [6] is given by the equation
5 0.25 025
©1=1 025 075
The stiffness matrix can be developed by giving a unit displacement successively at
coordinates 1 and 2 without any displacement at the other coordinate and determ; ning the
forces required at coordinates 1 and 2. To generate the first column of the stiffness matrix,
give a unit displacement at coordinate 1. The forces required at coordinates 1 and 2 are
kyy = -2KkN
To generate the second column of the stiffness matrix, give a unit displacement at
coordinate 2. The forces required at coordinates 1 and 2 are

ky; = 2kN
Hence, the required stiffness matrix [&] is given by the equation
(6 =2
il =
(%] 2 2}

Multiplying the flexibility and stiffness matrices,

ak_'o.zs 0256 -2] [1 o
[]“‘_0.25 075/ -2 2| {0 1

~"As the product of the two matrices is 2 unit matri X, the two matrices are the inverse
of each other. '
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Develop the flexibility and stiffness matrices Jor prismatic member AB with reference

to the coordinates shown in
(i) hinged support at A and roller supp
(i) fixed supports at A and B

Fig. 4.11 (a) for the following support conditons:

ort at B

(iii) fixed support at A and roller support at B.

Verify
other.

Solution

(1) The support conditions are shown
can be developed by applying a u
and 2 and evaluating displacements
first column of the flexibility matrix,
Eqgs (A. 71) and (A.72) of Appendix

2 are
@.
4o
3m| 6m f

El Canstant
@)
Koy

- K
NS

()

€))

A j /l\@ _E 8
I..3_m,.|.._6ﬂ_,_l
ElConstant
(e}

ko
4 e 3
e
1
(@
Kaq
ﬂ‘-Xl‘kﬁ ]
a \K&A;;:%
(i
Fig.

in each case that the flexibility and stiffness matrices are the inverse of each

in Fig. 4.11(b). The flexibility matrix
nit force successively at coordinates 1
at coordiantes 1 and 2. To generate the
apply a unit force at coordinate 1. Using
A, the displacement at coordinates 1 and

@
AD
4 >
i‘Sm’l 6m
(b)
Koo
/1\ kiz
TR
(d)
kot
2 g
3 4 E
Aq=1

U]

f
El /\@
A B
a,Sm, 6m 7%7

[

EiConstant
(h}

41

23| Page




5 = Bx3 -3x3x949=L
El

3 X9k

3(9—3}(9-—6)= 2

& = 3 X QK¢ Ei

To generate the second celamn of the flexibility matrix, apply a unit force at

cooe'dim!te 2. Using Egs (A.63) and (A.64) of Appendix A, the displacements
at coordinates 1 and 2 are

39-309-6) 2

O = 3% 9EI &l

3 x 60 12
2= 3% 0B  E
Hence, the required flexibility matrix (8] is given by the equation

1|1 2
[6125[2 12]

The stiffness matrix can be developed by giving a unit displacement successively
at coordinates | and 2 without any displacement at the other coordinate and
determining the forces required at coordinates 1 and 2. To generate the first
column of the stiffness matrix, give a unit displacement at coordinate | as
shown in Fig. 4.11(c). The forces required at the coordinates are

by, = --?’fzi+%=—o.zs.€r

To generate the second column of the stiffness matrix, give a unit displacement

& coordinate 2 as shown in Fig. 4.11(d). The forces required at coordinates 1
and 2 are

3El  3EI
k=~ * g = —025E
3Bl 3EI
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Hence, the required stiffness matrix [k] is given by the equation

1.500 —0.250
-0.250 0.125

Multiplying the flexibility and stiffness matrices,

11 2 1.500 —0.250] 3 {1 0]
616 = Zri2 1215 —0250  0125] |0 1
As the product is a unit matrix, the two matrices are the inverse of the each
other. o .

(i) The support conditions are shown in Fig. 4.11(e). The ﬂexnbﬂ_lty mairix c{;ag
be developed by applying a unit force successively at coordinates 1 an 1
and evaluating the displacement at coordinates 1 and 2. To_ generate _tﬂi
first column of the flexibility matrix, apply a unit force at coordinate I. Using

Egs (A.113) and (A.114) of Appendix A, the displacements at coordinates 1
and 2 are

[k] = EI[

5 = 3{9—3}(92-3x3><9+3><32) 2
= —

9 Ej 3E]

2

=

= —=-XO-39-6)=_=_

o= el "9 - 6) 3EI
To generate the second column of the flexibili
coordinate 2. Using Egs. (A.1

at coordinates | and 2 are

ty matrix, apply a unit force at
04yand (A.105) of Appendix A, the displacements

(4
3 s 2
— (9 -3)29-6) = “_
2 x PEl ¢ A ) 3E]
39 - 3)° _ 8
O = 3x9 EI 3Kl
Hence, the required flexibility matrix [8] is given by the equation

2 11
O1=3zh 4

The stiffness matrix can be developed by giving a unitdisplacement successively
at coordinates 1 and 2 without any displacement at the other coordinate and

determining the forces required at coordinates 1 and 2. To generate the first
column of the stiffness matrix, give a unit displacement at coordinate 1 as

shown in Fig. 4.11 (f). The forces required at coordimates 1 and 2 age
4EI  AE]

5|2.=

L ky = _3_+_6_ =2Ei
o 6EI  6FJ
kzl =-—-?-+6—2'=0.5.Ef

25| Page




To generate the second column of the stiffness matrix, give a unit displacement

at coordinate 2 as shown in Fig. 4.11(g). The forces required at coordinates I
and 2 are

6ElI  6Ef _
ki‘i = - —3:.!—-]-?*-——0.55!
12Ef  12ET
ky, = —__33 + ———-—-63 = 0.5E7

Hence, the required stiffness matrix [k] is given by the equation

20 - 05
k) =
4] E’[ - 05 0.5}

Multiplying the flexibility and stiffness matrices,

211 2 —o05] [1 o}
[3lik) = 35:[1 4 }Ef[- es ﬁj}z[ﬂ 1}

As the product is a unit matrix, the two matrices are the inverse of each other.

(iii) The support conditions are shown in Fig. 4.11(h). The flexibility matrix can be
developed by applying a unit force successively at coordinates 1 and 2 and
evaluating the displacements at coordinates [ and 2. To generate the first column
of the flexibility matrix, apply a unit force at coordinate 1. Using Eqs (A.35)

and (A.36) of Appendix A, the displacements at coordinates 1 and 2 are

6,|=4——?;35[4><93—12><92><3+t2><9x32—3><33]
x .

11

12E1

-'32 3 2 2 3
52|=4—9'{'E[2X9 -6X9° xXx3+5%x9x3 =-37]

s

T
= 6EI
To generate the second column of the flexibility matrix, apply a unit force at
coordinate 2. Using Egs (A.30) and (A.31) of Appendix A, the displacements
at coordinates 1 and 2 are
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32
Oz = 35 P Er
7

= GEI

[2><93—6x92><3+5x9x32—33]

e ) 33

8y = [4x93—9x92§<3+6x9x32—331

12 x93 EJ
11

= 3E1
Hence, the required flexibility matrix [8] is given by the equation

1T 11 14
18)=12E1| 14 44

The stiffness matrix can be developed by giving a unit displacement successively
at coordinates 1 and 2 without any displacement at the other coordinate and
determining the forces required at coordinates 1 and 2. To generate the first
column of the stiffness matrix, give a unit displacement at coordinate | as
shown in Fig. 4.11(i). The forces required at coordinates 1 and 2 are
4ET + 3ET  11EI

3 6 6

—6EI 3El —7EI
+ ]
3? 62 12

kn =

kyy =

To generate the second column of the stiffness matrix, give a unit displacement
at coordinate 2 as shown in Fig. 4.11(j). The forces required at coordinates |
and 2 are

6El 3El _ ~TEI
kip= ——5+—"=
2 6 12

12E1 3L _ 1EI
kﬂ = 33 . 63 24

Hence, the required stiffness matrix [k] is given by the equation
EI [ 44 -14
W= [—t4 i ]
Multiplying the flexibility and stiffness matrices,

1 {1 14lEr| 44 -14{ |1 0
Ik = 1oprt1a 44|24 |14 11| o 1
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Develop the flexibility and stiffness matrices for beam AB with reference to the

coordinates shown in Fig. 4.12(a).

Solution

The flexibility matrix can be developed by applylng a unit force successively at
the coordinates and evaluating the displacements at all the cocrdianates. To generate
the first column of the flexibility matrix, apply a unit force at coordinate 1. Using
Eqgs (A.14), (A.15) and (A.16) of Appendix A, the displacements at the coordinates are

10
‘SII = E
10x 1) 50
= om T m
10
53[ = E
5 - 102 x 20 - 10) _ 150
o 6EI EF
@ @ kﬁi -[f41
Ag /l\‘@ /l}@ g ‘___,_Qﬁ‘!-\-kﬂ ‘,:l‘\a\k31
10m , 10m W
El Constant aq=1
(@ (b)
foo haz Kes ke
g - ’l‘-\k12 /‘1"‘32 a r"‘f-[:_:, ’J“ _N\kga
f\\A2=1 a Ag=1
© @)
Ko Kas
Z| f’l‘*k“‘ /l\““
ﬂ ‘__'# Ag=1

(e)

Fig. 4.12

To ge!lerate the second column of the flexibility matrix, aply a unit force at coordinate
2. Using Eqgs. (A.9), (A.10) and (A.11) of Appendix A, the displacements at the

coordinates are
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10x10 _ 50

Oip = 2EI  EI

5, - 10° _ 1000

27 3Er 3EJ
10 x10 _ 50

Hi

O3 2EI  EI

10%(3 x 20 —10; _ 2500
6EI 3ET

O =

To generate the third column of the flexibility matrix, apply a unit force at coordinate
3. Using Eqgs (A.5) to (A.8) of Appendix A, the displacements at the coordinates are

5. 1o _10° 50
137 Er ‘523'251 El
5.2 20200
3= Er BT 251 EI

To generate the fourth column of the flexibility

: frtatrix, apply a unit force at coordinate
4. Using Egs (A.1) to (A.4) of Appendix A,

the displacements at the coordinates are

10220 - 10) 150

Bie 2Ef v El
5, = 10%(3 X 20 —10) 2500
4 6EI 3EI
20" 200
" 2El EI
20° 8000

Hence, the required flexibility matrix [8] is given by equation

30 150 30 450
1 150 1000 150 2500

T3EF| 30 150 6 600
450 2500 600 8000

[

-

The stiffness matrix can be developed by giving a unit displacement successively at

each coordinate without any displacement at the other coordinates and determining the

forces required at all the coordinates. To generate the first column of the stiffness

matrix, give a unit displacement at coordinate 1 as shown in Fig. 4.12(b). The forces
required at the coordinates are
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= + —=0.

ky, io 10 0.8E!

SEI _ 6ET _
by =7 T 107 T

2E!
ky = —— = 0.2E1
31 10

6E]

kﬂ = T{}T = — 0.06ES

Io generate the second column of the stiffness matrix, give a ynit displace-ment at
soordinate 2 as shown in Fig. 4.12(c). The forces required af the coordinates are

;C _ﬁg _ g -_— g
27 100 107
12EF  12EI

= g 10 A

GEI
k32 = —I'?" = 0.0GEI

12E1
kyy = ~ _10—3' =— 0.012E!

To generate the third column of the stiffness matrix, give a unit displacement at
coordinate 3 as shown in Fig. 4.12(d). The forfes required at the coordinates are

2EI

kiy = S5 = 02E

kyy = % = 0.06E1

ks _ i‘%{ — 0.AE]

kas = i}%g = — 0.06EI

To generate the fourth column of the stiffness matrix, give a unit displacement at
coordinate 4 as shown in Fig. 4.12(e). The forces required at the coordinates are

~ 6El

ki = g2 =~ O:06E!
— 12E1

ko = 5 = = 0.012E1
- 61

Ky = gz =~ 0-06EI
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12E1
k44 = ‘F = 0.0IZEI

Hence, the required stiffness matrix [4] is given by the equation

0.800 0 0.200 - 0.060

(K] = EI 0 0.024 0.060 - 0.012
0.200 0.060 0.400 - 0.060

- 0.060 -0.012 - 0.060 0.012

In this example the computational effort required for developing the flexibility matrix
Is approximately the same as that for the stiffness matrix.

Analysis of pin-jointed frames by Stiffness Matrix method
Unit displacement in coordinate direction j:
Consider the Figure 11 48 }

AAT =1
Therefore, the shorteoing of member AB = 44" 5in € = sin ©

F'M"-“:Uﬂmhmm;

Thercfore, the axial compressive force 7 developed is given by

Pl.
;\E = sin O
or P = Ak sin O
l.
k', = Fcos = %’: »Ccos O sin®
AE .
ky = Psin O = ——=xsin"0

AE
kew = —P€c080 = - 'l;--xsmﬂcoso

AF >
k, = ~PsinB= - ; x sin 0
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Joim stiffness will be

ky = 2[ i:u x cok B sin H:|
[ .
kll - E' ‘F_ o 'illl'“}

Ky = ° ‘-4,5 x sin O cos 9]

[ AE .
‘.m = I.‘“l-* s 0]

Member Forces

Let the final position of member A8 be A’ B’ as shown in Figure 11,49, Note that, for deriving

the expression, A’ B’ is selected such that all the displacements are positive.

Bl
i l"]t
// A, -
:

s

Figure 11.49: Final position of member AB.

Shortening of member due 1o displacement at A
= Au LON 9,\. + AAY M Qu
Extension of the member due to displacement at B

= Agy <08 B, + Agy sin Oy
Thercfore, the extension of member AB

= (Agx = Apx) cos By + (Byy ~ A,uy) sin B,y

AE
Pup = _L—“A“ ~Aax)cos B, +(Ayy ~A,y)sinb )

Example :

Analyse the pin-jointed truss as shown in figure by stiffness matrix method. Take area
od cross-section for all members = 1000 mm?and modulus of elasticity E = 200 kN/mm?
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Solution Degree of freedom = 2
The coordinates are selected as shown in Figure 11.50(5). Tuble 11.4 is prepared.

o

bl lll 2272272727707 S
F 5 —
. \
NG
') (1)
1 42)
Figure 11.50(b): Coordinates selected.
Tuble 11.4: Calculations for assembling stiffness
AE | =
AE — : 115 — %in” A
Member F— 0 i B ~ con B un @ T
. 3 b v 8 In
oA 40 150 30
o8 B, 569 115 28,245 IR INS 25 RS
oc 80.0 4y 0 0 B0 (4K)
-ﬁ'ﬂ; 64, 262 (1h 17.321 ) 51 442
b)) 15.606 15,606 170.247
E
i E'AT::&&’ 9 = 75.606
ky = k3 = E Exrunﬂninﬁbr- | 5.606
[AE .,
kyy = 2 -——L—-:-t sm'H} =]70.247
I 40
B | = |-60
: i
Therefore, the stiffness equation 18
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1 J[no_zu 15.()01\“ 40 ]

1262812 /)| 15.606 75.606 )| ~60 |
" 0,465
=1.0310

AL
Poa = T[m(\x Apx)€08 054 +(Agy —Axy )it B, |

40 [(0 - 0.465) cos 150° + (0 + 0.310) sin 150°]

22 308KN

56.569%(0 — 0.456) cos 135° + (0 + 0.310) sin 135°)

31.000 'léN
= 80 [(0 - 0.465) cos 90° + (0 + 0.310) sin 90°]

= 24.8 kN
69.282 [(0 ~ 0.465) cos 60° + (0 + 0.310) sin 60°]

= 2.492 kN

It

Pop =

Ul
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UNIT-I1I
APPROXIMATE METHODS OF ANALYSIS

The portal method
The portal method is based on the assumption that, for each storey of the frame, the interior

columns will take twice as much shear force as the exterior columns. The rationale for this
assumption is illustrated in fig 2.1

Stackep PorrarL Frames

Sriffer inrerior column
assumed to take twice
the shear of exrernal columns
_h.
Exterior Interior ‘ ‘ Exterior — ke 24 ke
—— ——— - —
F 2F F
F,
..'_...
(o] [ o]
£y o
— )‘\55“ IMc 1Nntcrior Colllll'll'ls
. . . : R rake twice the shear force of
Exrerior Interior Exterior x
o [o] CxXICrior Cl:l'l]l'l'll'ls '.'Il\(i. Lse
L —— = horixontal equilibrium ro
] — s 1
f‘r lf“l_ f‘{ solve for
£,
: o < : . SIMPLIFIED STRUCTURE
Exterior Interior Exterior Toin B e O i
F 2F, F : ) ’

- "':_* — Same for shear in second
l storey columns

Fig 2.1: Portal Method for the Approximate Analysis of Indeterminate Frames

Let's consider our multi-storey, multi-bay frame as a series of stacked single storey
moment frames as shown at the top of Figure 2.1. The columns on either end of each
individual portal frame are likely similar size because they would each equally share the
gravity load from above. When we join these all together into a stacked system, we can see,
as in the figure, that the interior columns have two portal frame columns each since they need
to take axial force from the left and from the right (whereas the exterior columns only take
gravity loads from the left or right). So, if we combine all of these individual portal frames
together, our interior column (the sum of the two individual portal frame columns) will need

to be twice as strong as the exterior columns.
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If the interior columns are twice as strong, they may also be approximately twice as stiff
(as shown in the diagram at the top right of Figure 2.1). If we then have three columns in
parallel as shown and they all share the total lateral load at the top as shown, then they will
resist the total load in shear in proportion to their relative stiffness. A column that is twice as
stiff will take twice as much load for the same lateral displacement.

So, it may be reasonable to assume that, since the interior columns are approximately
twice as big, and therefore twice as stiff, as the exterior columns, those interior columns will
take twice as much shear as the exterior columns. This is the basis of the portal method
assumption.

This assumption is valid for the columns at every storey as shown in Figure 2.1. So, the
portal method provides us with the shear force in each column at each storey in the structure.
In our example structure, for any given free body diagram cutting at the hinge location at a
single storey, the system will be 2°2° indeterminate. If we know the shear in the middle
column in relation to the shear at the left column, that eliminates one unknown (we assume
the middle column has twice as much as the left column 2F12F1). If we know the shear in the
right column in relation to the shear at the left column, that eliminates another unknown (we
assume they are equal). These two assumptions eliminate the remaining 2°2° of static
indeterminacy, meaning that we can find the rest of the unknowns using the equilibrium
equations only. The portal method assumptions do not give us three known forces because we
still have to solve for the force in the left column using horizontal equilibrium before we can
use that force to find the forces in the middle and right columns.

Example2.1

An example indeterminate frame that may be solved using the portal method is shown
in Figure 2.2. The column areas are given for use with the cantilever method which will
be discussed in the next section. For now we will only analyse this structure using the

portal method.

100 kN> G H I

4 m

Find the shear and
50 kN D E E moment diagram of

> the frame using the
, = portal method and

coll = col2 =

10 000 20 000 15 000 4 m the cantilever method.
mm? mm? mm?
A B C |
Vv VA Vrrrrrr A
| 5 m | 5 m |

Fig 2.2: Indeterminate Frame Approximate Analysis Example
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The first step in the portal method analysis is to add hinges at the centre span or
height of all the beams and columns (except for the lower storey if the column bases are
pinned), and then determine the column shears at each storey using the portal method
assumptions. This process is illustrated in Figure 2.3. The new hinges are shown in the figure
at points a through j.

100 LN_ G i H j I
STRUCTURE £ & ih 4m
WITH 50 kIN D d E F
ADDED > -
HinGEes b
< 4 m
B iC 4
5 m | 5 m |
FBD 100EN_ G i H ) I
Tor 3 ! !h Jz m
F f 2F g F
STOREY 2 2¢ A 4F, =100 kN
3
N ‘ 4 F,=25kN
100 kN} G i H ] 1
FBD
STRUCTURE f & b 4 m
1o Lower g b 4 E . F
STOREY > O
HINGES 2m
F, &a 2F, &b F, 8¢ _4
— -— - 4F}, =150 kN
)
?‘L ? ?1‘ F,=37.5kN

Fig 2.3: Portal Method Example - Determining Column Shears

To determine the column shears for each storey, two different section cuts are made. For
the top storey (shown in the middle of Figure 2.3), a section cut is made through the hinges at
points f, g, and h (although for the portal method, this cut could be anywhere along the height
of the storey when finding the column shear). To find the shear force in the left column
(F2F2), the force in the middle column is assumed to be equal to twice the force in the left
column (2F22F2 since it is an interior column) and the force in the right column is assumed
to be equal to the force in the left column (F2F2). Then, using horizontal equilibrium applied

to the whole free body diagram of the top storey:
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100 - F5, —2F5 — F», =0

Therefore, the shear in the exterior columns in the second storey is 25kN and the shear in the
interior column is 50kN. For the lower storey (shown in the bottom of Figure 7.5), a section
cut is made through the hinges at points a, b, and c. Similarly:

Ly Z F.=0
100+ 50— Fy —2F, — F1 =0
4F; = 150
F;, = 37.5kN «
Therefore, the shear in the exterior columns in the first storey is 37.5kN and the shear in the
interior column is 75kN.
Now that we know the column shears, the rest of the analysis uses only equilibrium to find
the rest of the forces in the frame. To do so, the entire frame is cut into separate pieces at
every hinge location. This is useful because each piece of the structure between the hinges
can be analyse with the knowledge that the moment at the hinge is always zero. This process

is illustrated in Figure 7.6.

I2.5m|2.5m|2.51‘n|2._‘5ml
‘G |i |[—I |J’ |1

FBD Tor STOREY ]';0;.
(FroMm PoRrTaAL ‘ 2m
METHOD) ! t lg lh
25«+ 504- 25(-1-"
? ?

Tor 2.5m 20@ 2.5m 25m.I 20@ 2.5 m
STOREY 100

FBDs — > l—O t’TJ 4 3 i’ —
BETWEEN f g @20 D_lh 2m
H(fﬁf ; ®2s<-l- @504- ®25<-1‘—

20@ 0@ 20@
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L00KN i H I
FBD STrRUCTURE g h 4m
TO LOWER
Storey HINGES 50 kN 1D d E e F |
(FroMm PortaL 5
METHOD) b c | "
37. ‘3 75 I 37.5 f?
?
25 m . 2.5 m . 25 m 2.5 m
 — [ T f——1
©,, © (O
T 2_")© 5 +>2‘)
OWER
STOREY 50% &
FBDs 230 D _d 437.5*» d £ 12 Si»
BETWEEN
50 2m
HINGES @ b
(kN) 37 5<—l— %7 ‘)

®75 (—l—
70@ U 70@

Fig 2.4 Portal Method Example - Analysis for Internal Member Forces at Hinge Locations

To analyze the frame, it is helpful to start at the top of the structure and work our way down.
The previous free body diagram of the top storey from Figure 2.3 with the known column
shears is shown at the top of Figure 2.4. This free body diagram is further split into three
pieces as shown directly below, cutting the storey apart at the hinge locations in the beams (at
points i and j). The numbers that are shown in grey circles provide a suggested order for the
analysis that will be described here. This is not the only order that is possible, there are many
ways to solve this structure. The goal of this analysis is to find all of the unknown vertical
and horizontal loads at the hinge locations. The force for step 0 is a given: don't forget to
include the external lateral load of 100kN10OKN. Step 1 loads are from the portal method
analysis, giving the column shears for each column at points f, g, and h (the results of which
are shown at the top of the figure). Now that all of the previously known forces are included
on the free body diagrams, we can use equilibrium to find the remaining unknowns. In step 2,
we can use horizontal equilibrium for the left free body diagram to find the horizontal load at
point i to be equal to 75kN«75kN«. Don't forget that on the other side of the cut at point i
(the right side) the horizontal force at point i must point in the opposite direction
(75kN«75kN+«). At the same time in step 2, horizontal equilibrium of the middle free body

diagram for the top storey can be used to find the horizontal load at point j (which is also in
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opposite directions on either side of the cut at j). In step 3, moment equilibrium around point i
may be used to find the vertical load at point f. In step 4, vertical equilibrium is used to find
the final unknown for the left free body diagram, the vertical load at point i. Don't forget to
transfer that load to the other side of the cut at point i. Like the horizontal load, the vertical
load on the other side of the cut at point i must point in the opposite direction. Moving onto
the middle free body diagram for the top storey, in step 5, moment equilibrium about point j
is used to solve for the vertical load at point g (which happens to be 0). Then in step 6,
vertical equilibrium is used on the middle free body diagram to find the vertical load at point
J, which is also transferred in the opposite direction to the other side of the cut. Last, in step 7,
vertical equilibrium on the right free body diagram for the top storey is used to find the final
remaining unknown, the vertical load at point h. Again, this step-by-step method is not the
only order that can be used to solve for the unknowns. The important thing is to look at how
you can use some equilibrium equation to solve for one of the remaining unknowns.

For the lower storey, the frame is again cut into three different pieces with cuts being made at
the hinge locations (to avoid having any unknown moments in the free body diagrams), as
shown in lower diagram of Figure 2.4. This time, step 0 may include the external lateral load
of 50kN50KN in addition to the forces at points f, g, and h that were previously found using
the top storey free body diagrams shown above. At points f, g, and h on the lower storey free
body diagrams, the loads from the top storey must be applied in the opposite directions to
those from the top storey free body diagrams (because they are on either side of a cut in the
structure). Then in step 1, the known column shears from the portal method analysis are
applied to points a, b, and ¢ (based on the results from the previous analysis which are shown
about the lower storey free body diagrams. Once all of the known forces are included, the rest
of the unknown forces may be found using equilibrium as was done for the top storey. Again,
one suggested solution order is shown in the figure using numbers in grey circles.

Once all of the forces at the hinge locations are known, the shear and moment diagrams may
be drawn for the frame. The resulting diagrams are shown in Figure 2.5. The shear in all of
the beams and columns are always constant for these types of analyses, and are simply equal
to the horizontal force in the middle hinge for the columns or equal to the vertical force in the
middle hinge for the beams. The maximum moment in the beams and columns is then found
using the shear multiplied by half of the column height for columns or multiplied by half of
the beam length for beams. This is because there is no moment at the hinge. So if we start at
the hinge and move towards any beam column intersection, then the moment at the
intersection will be equal to the shear multiplied by the distance between the hinge and the

intersection. For example, for the moment in column AD at point D, we start with a shear in
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the column of 37.5kN37.5kN at point a as shown in Figure 2.4, and then the distance between
point A and point D is 2m. This gives a total moment in column AD at point D of
2(37.5)=75kNm 2(37.5)=75kNm. For the moment in beam HI at point H, we start with a
shear in the beam of 20.0kN20.0kN at point j as shown in Figure 2.4, and then the distance
between point j and point H is 2.5m2.5m. This gives a total moment in column AD at point D
of 2.5(20.0)=50kNm2.5(20.0)=50kNm.

25 G H I

20 20
50 25

V,(kN)

50 50
75 37.5

A B C

Figure 2.5 Portal Method Example - Resulting Frame Shear Diagram
50 50

' 50 1
=N,
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Figure 2.6: Portal Method Example - Resulting Moment Diagram
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The cantilever method
The cantilever method is very similar to the portal method. We still put hinges at the middles

of the beams and columns. The only difference is that for the cantilever method, instead of
finding the shears in the columns first using an assumption, we will find the axial force in the
columns using an assumption.

The assumption that is used to find the column axial force is that the entire frame will deform
laterally like a single vertical cantilever. This concept is shown in Figure 2.7. When a
cantilever deforms laterally, it has a strain profile through its thickness where one face of the
cantilever is in tension and the opposite face is in compression, as shown in the top right of
the figure. Since we can generally assume that plain sections remain plane, the strain profile
is linear as shown. The relative values of the tension and compression strain are dependent on
the location of the neutral axis for bending, which is in turn dependent on the shape of the

cantilever's cross-section

Neutral Axis

Neutral
Axis
(centroid
of beam
section)

VERTICAL
CANTILEVER

Tension
Strain —__

ol

I
. STRAIN PROFILE
1 : +

Assuming a linear strain
profile for the column forces
(as above), for linear analysis,
F axial stress profile will
also be linear

S O O
Column Axial stress in columns
Area A, ¢ A, A, proportional to distance
from the neurral axis
(Force = Stress x Area)
- - L _ 4 g -—
\y 32 292
v H % = 14 (8]

V | AxIAL STRESS PROFILE
X
a

A 3 IN COLUMNS
Neutral Axis

(Centroid of Column Areas)

Figure 2.7: Cantilever Method for the Approximate Analysis of Indeterminate Frames
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The cantilever method assumed that the whole frame will deform laterally in the same
way as the vertical cantilever. The location of the neutral axis of the whole frame is found by

considering the cross-sectional areas and locations of the columns at each storey:

G :,(.A,ZC,)
Z-;{ ‘4"-

where X X is the horizontal distance between the location of the neutral axis and the zero
point, AiAi is the area of column ii, and xixi is the horizontal distance between column ii and
the zero point. The location zero does not matter, but is commonly set as the location of the
leftmost column.

Once we know the location of the neutral axis, using the assumption that the frame
behaves as a vertical cantilever, we know that the axial strain in each column will be
proportional to that column's distance from the neutral axis, just like the strain in any fibre a
distance xx away from the neutral axis of a cantilever is proportional to the distance xx. Since
we are assuming that all of our materials are linear (stress is linear to strain), then this also
means that the axial stress in each column is proportional to it's distance from the neutral axis
of the frame. Also, columns on one side of the neutral axis will be in tension, and columns on
the other side of the neutral axis will be in compression. The linear axial stress profile for a
sample structure is shown at the bottom of Figure 2.7. If we assume an unknown value for the
stress in the left column (c1olin the figure) then the cantilever method can be used to find the
stress in the other two columns as a function of their relative distance from the neutral axis as
shown in the figure. From these relative stresses, we can determine the force in each column
as a function of stressclol. Then, using a global moment equilibrium, we can solve
for olol, and therefore for the axial force in each column. From this point, the structure is
again broken into separate free body diagrams between the hinges as was done for the portal
method and all of the remaining unknown forces at the hinges are found using equilibrium.

Since this method relies on the frame behaving like a bending cantilevered beam, it should
generally be more accurate for more slender or taller structures, whereas the portal method
may be more accurate for shear critical frames, such as squat or short structures.
Example 2.2
The details of the cantilever method process will be illustrated using the same example
structure that was used for the portal method (previously shown in Figure 2.3).

The most important part of the cantilever method analysis is to find the axial forces in the

columns at each storey. We will start with the top story as shown at the top of Figure 2.8
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Figure 2.8: Cantilever Method Example - Determining Column Axial Forces

First, we must find the location of the neutral axis for the frame when cut at the top story

using equation (1)(1) (the column cross-sectional areas are the same for both storeys and are

shown in Figure 7.4):

Zi(Az' x;)
> T
10000(0) + 20 000(5) + 15000(10)
10 000 + 20 000 + 15000
= 5.555m

21

1]

The location of the left column is selected as the zero point.
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Knowing the neutral axis location (as shown in the top diagram of Figure 2.8), we can
determine the axial stress in all of the columns in the top storey. We will do this in terms of
the stress in the left column, which we will call 6262 as shown. The stress in the middle
column will be equal to 6262 multiplied by the ratio of the distance from the second column
to the neutral axis to the distance from the first column to the neutral axis:

Likewise, the stress in the right column will be:

(4.44) .
T9 — U.Sm
5.56 - B

From these stresses, we can determine the force in the columns by multiplying the stress in
each column by it's cross-sectional area as shown in the top diagram of Figure 2.8. Also, the
left and middle columns are on the tension side of the neutral axis, so the column axial force
arrows will point down as shown (pulling on the column) and the right column is on the
compression side of the neutral axis, so the column axial force arrow for that column will
point up as shown.

Now, we can use a moment equilibrium on the top story free body diagram

in Figure 7.9 to solve for the unknown stress. We will use the moment around point f:

¥ Z ﬂ/ff =0

100 kN(2m) — A.;2(0.109)(5m) + A.3(0.805)(10m) =0
—100 kN(2 m) — (0.02 m?)(0.105)(5 m) + (0.015 m*)(0.855)(10 m) = 0
oy = 1818.2 kN /m?
This resulting stress in the left column may be subbed back into the equations for the force in
each column shown in the figure to get forces of 18.2kN|18.2kN| in the left
column, 3.6kN|3.6kN| in the middle column, and 21.8kN121.8kN1 in the right column.

For the lower story, the column areas are the same, so the neutral axis will be located in
the same place as shown in the lower diagram in Figure 2.8. This means that the relative
stresses will also be the same. To solve for the stresses in the left column again for the lower
storey (c1o1), we need to take a free body diagram of the entire structure above the hinge in
the middle of the lower column (as shown in the figure). We should cut the lower storey at
the hinge location because that way we do not have any moments at the cut (since the hinge

is, by definition, a location with zero moment). If we chose to cut the structure at the base of
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the columns instead, we would have additional point moment reaction at the base of each
column which would have to be considered in the moment equilibrium (which are unknown).
Such moment reactions at the base of the columns are shown in Figure 2.7. These extra
moments would make it impossible to solve the equilibrium equation for clc1. So, taking the
cut at the lower hinges as shown in the lower diagram in Figure 2.8, we can solve

for slolusing a global moment equilibrium about point a:

A Z M, =
—100(6) — 50(2) — (0.02)(0.101)(5) + (0.015)(0.807)(10) =0
o1 = 6363.6 kN /m?

This resulting stress in the left column may be subbed back into the equations for the force in
each column shown in the figure to get forces of 63.6kN|63.6kN| in the left
column, 12.7kN|12.7kN/ in the middle column, and 76.4kN176.4kN* in the right column.

From this point forward, the solution method is the same as it was for the portal method.
Split each storey free body diagram into separate free body diagrams with cuts at the hinge
locations, and then work methodically through using equilibrium to find all of the unknown

forces at the hinge cuts. This process is illustrated in Figure 2.9
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Figure 2.9: Cantilever Method Example - Analysis for Internal Member Forces at Hinge Locations
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Like the portal frame example, the free body diagrams in Figure 2.9 are annotated with
numbers in grey circles to show a suggested order for solving all of the unknown forces. Of
course, as before, step 0 and step 1 consist of known values, either caused by external forces
or the previous storey (for step 0) or the column axial forces that were solved using the
cantilever method assumptions (for step 1). The rest of the unknowns are solved for using
vertical, horizontal or moment equilibrium.

Once all of the unknown forces at the hinges are found, the shear and moment diagrams
for the frame may be drawn using the same methods that were used for the previously
described portal method analysis example. The final shear and moment diagrams for this
analysis are shown in Figure 2.10. This figure shows both the values from this cantilever
method analysis compared with the previous portal method analysis example results (in
square brackets). This shows that with a significantly different set of assumptions for this

example frame, we get similar shear and moment diagrams using the two different methods.

25] H 1
[Portal] | G

Method 22.8 - - -
Cantilever

Method

[37.5]
YOEN) 55042

A
}}50 ]
5.
[Porcall— 5200 e i
Method ’ 3
Cantilever
Method

[100]100
[125]

Figure 2.10: Cantilever Method Example - Resulting Frame Shear and Moment Diagrams

Substitute frame method

The building frame is a three dimensional space structure having breadth, height and length
i.e. X, y and z coordinates. The manual analysis of space structure is tedious and time
consuming. Therefore, approximation is made and the space frame is divided into several

plane frames in x and z directions. Then the analysis of these plane frames is carried out.
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Even an analysis of in multi-storey plane frame is laborious and time-consuming. Therefore,
further simplified assumptions are made and analysis of roof or floor beam is made by
considering this beam along with columns of upper and lower storey. Columns are considered

as fixed at far ends. Such a simplified beam-column arrangement is called a substitute frame.

1 1 2 3 L
ROUF ! Z 3 “ I
R0 mooR | & z 8
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v
2MOeLoon |2 |]":' LL 12
ST 5 oom 13 ™ 15 18 Figure 17.2 (a) : Substitute Frame at Roof Level
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Figure 2.11: Typical Plane Frame Figure 2.12 (b): Substitute Frame at First Floor Level

Normally, a building frame is subjected to vertical as well as horizontal loads. The vertical
loads consist of dead load and live load. The dead load comprises of self-weight of beams,
slabs, columns, wall, finishes, water proofing course etc. The horizontal loads consist of wind
forces and earthquake forces. In order to evaluate ultimate load or factored load, the dead
load and live load are multiplied by a factor which is known as partial safety factor gf load or
simply a load factor. This factor is 1.50. In order to evaluate minimum possible dead load on
the span which is self-weight, sometimes the dead load is multiplied by a factor 0.90 for
stability criteria. Therefore, Wn, in=D.L. or 0.9 D.L, and W = 1.5 (D.L+ L;.L) The effect of
a loaded span on the farther spans is much smaller. Then moment, shear and reaction in any
element is mainly due to loads on the spans very close to it. Therefore it is, recommended to
put live load on alternate spans and adjacent spans in order to cause severe effect at a desired

location or section.

L 20 Ll L8 L !
_ﬁF_"ﬁf s oA e - ey — I L.L
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| A B c D E [=
A 8 C [ o] E F

JJ.'J' T Fr oo o F- F i i T Forrd e o =
Figure 2.13(c): Maximum Sagging Moment Figure 2.14(d): Maximum Column Force
in a Column at the Centre of CD at D, i.e. Maximum Shear in Beam CD and DE
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Figure 2.15 (e): Arrangement of Loads for Maximum Bending Moment in a column at B
Table 2.1 shows the arrangement of live load (LL) on spans in addition to dead load (DL) 011

all spans depending upon critical condition.

Table 2.1
1 ) _'_ - I —
5. No. Critical Condition Live load {L.L) on spans Reference
| I Maximum hogging moment at [ [ DE and CID | Figure 17.3 {a)
2. Maximum sagging moment at centre 1.“']3; | ___é:_' :1-.1 DE - | -Fi.ElJTﬁ‘- 17.3 (b}
: | Mir:lmum sapging moment al centre of J AR, CI, and EF | Figure 17.3 -[¢;'|_|I
] |

[ Maximum axial force in o colome an 0, §.e. ULy and DE Figure 1 7.3 (d)
maximum shear in beam CD and DE | |

.__._-,
a |

|
A Maximum moment in column at B | Longer span von one side | Figore 17.3 (e} |

| of column I|

The restraining effect of any member forming a joint depends also upon the restraining
condition existing at the other end. The other end may have following three conditions:

(a) Freely supported or hinged.

(b) Partially restrained. or

(c) Rigidly fixed.

In most of the framed structures the far end is considered as rigidly fixed because of
monolithic construction of a joint. In a substitute frame, unbalanced moment at a joint IS
distributed in columns and beams depending upon their ratio of stiffnesses.

Steps for the Analysis

(a) Select a substitute frame, by taking-floor beam with columns of lower and upper storey
fixed at far ends.

(b) Cross sectional dimensions of beams and columns may be chosen such that moment of
inertia of beam is 1.5 to 2 times that of a column and find distribution factors at a joint
considering stiffnesses of beams and columns.

(c) Calculate the dead load and live load on beam. Live load should be placed in such a way
that it causes worst effect at the section considered i.e alternate and adjacent loading should

be adopted.
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(d) Find the initial fixed end moments and analyse this frame by moment distribution method.
(e) Finally draw shear and moment diagram indicating values at critical section.
Limitations
(a) Height of all columns should be same in a particular storey.

(b) Sway of substitute frame is ignored even during unsymmetrical loading.
Example 2.3 Analyse the substitute frame shown in Figure 2.16 for

(a) Maximum sagging moment at centre of span BC,

(b) Maximum hogging moment at D,

(c) Minimum possible moment at centre of BC and

(d) Maximum axial force in column at D.
Assume frames are spaced at 3.5 m each. Other data is as follows:
Thickness of floor slab = 120 mm

Live load = 2 wm?

Floor finish = 1 kN/m?

Size of beam (overall) = 230 x 450 mm

Size of column =230 x 375 mm

[ E
-l--l:.-l.-’l”I .:-l-l..=1 ﬂ-“:‘| “I 1 T !T
| 3.5

A e c o| [ 3
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'K 3.5M
"1 it
C s E
"'"'L#? IELE: .-"'"?1 :F'l"l'?",'l .—Lv- 2

rh—-: R e s L 5 M —wda— L5 M -—41

MM |
ZIOMM
SEC. 22 SELC.1-1

Fig 2.16
Calculation of distribution factors
leot = 230 x 375% /2 =1.01 x 10° mm*
lbeam = 230 x 450% / 12 = 1.75 x 10° mm”
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Relative stiffness,

Total Relative

Distribotion

Jodime NEember K = xI StifThess (2 &) factor
=7 — ks K

T |
Asy ZEBSTL.43 0.284
A AA ZEEST1 43 L0F] 4642 K6 o.284
AR AT SO O a3z
B A 43T SO0, M [FRCE B
B B, ZREST1.43 | 14DAS3 LTS 0206
BBz ZRBST1.43 | 0206
B ARBERER. B 0276
O IRBRBE. BD ! 0396
" oy ZEEST1.43 131603175 oale
O ZRRST1.43 029
o | = SO0, 00 0266
o | 3 50000, 00 ! 266
5] D3 1 ZERST1.43 | IAI6O31.TS oZ1e
2 | ZABSTIL.43 o.zie
DE AZEBRAR B | 0296
ED IRRBRS. BRI 0402

E EE; ZABST1.43 SEAOET TS 2GS ]
EE: 2RAST. 43 0.2

Factored Loads Wmax = 1.5 (wg+ w;) = 1.5 (15.8975 + 10.5)
(a) Maximum sagging moment at centre of BC

A! E]d.p- c}‘lf Dl E1|
W MIN=15.90 W MAX = 39.60 W MIN «15.90 W MAX=39.50 |[KN/M
£
E;
Ld 5L
E
Fixed end moments are as follows:
_ 2 _ -
M ag =-(15.9x4°)/12=-21.20 KNm = -M ga
M gc=-66.825 kNm = -M ga
M cg =-33.125 kNm = -M pc¢
M pe=-66.825 kNm =-M gp
Joint | Member | . IMF. F.E.M. Fitst C.aD. Second Wl Third Final
[rist. Irist. Irist.
A A .284 G602 —2.02 — 1T 398
A 284 & 02 — 202 = (LT 308
AR 43 - 21.20 916G T2 3.07 oG — 003 T.96
B BA L B + 2120 14.24 . 4,58 012 1.53 .97 39 .58
. BE, L 1 T L= - § 008 (h.54 112
BE- 20 Od 008 [T | 10,12
BC 0276 — 6653 12.59 - 98 [t R .59 L 1% — 50 R’
L B 02946 + G6H.R3 - 597 629 — 3.1 l.l‘/_\ .05 - 072 50 29
L0 (L2Ea — T 38 — 2 36 — .53 - 1027
[ ] L ~T7.38 — 2.36 — 053 - 27
D 0266 —-3313 - B D 4. 48 - Z.Eﬁﬁ\_{, 2.34 - LG5 — 38.74
¥ [ L 0h.256 + 3313 B 96 — 4 48 4.76 A- 1.43 .65 41 .59
1 0219 T3R8 302 053 11.83
[ 05 0219 T38 392 .53 11.83
DE 0.296 — 6583 997 /r-l 3.43 530 = 1.0 Q.72 - 65,27
l E EI bz + 55 K3 | - 2-6_35/ 498 — 2.0 '/l-\ 2.65 — 1.0 ) Sed
EE; 0,299 — 1998 — 1.49 — B - 22,27
| EE> 0,299 — 1995 - 1,49 | - LR —22.27

(b)Maximum hogging moment at D in beam and (d) maximum axial force in column at D
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Fig 2.18
Fixed end moments are as follows
Mup = -21.2 kNm = - Mg, MEC'__ — 26,83 kNm—-ML-H
MC'D = —H250 kN m = —Mﬂf Mﬂﬁ = —f(683 kNm = _MED
i T
Joint | Member IF. | FEM. | Fitst CaO. Second | Ca, Third | Final
Dhist. Diist. Dhist.
[ T —
LA | AA 0.284 6.02 —0.25 | 0s7 | e3a
Adz 1.2%4 a2 (.25 0.57 fi3d
AB 0.432 | = 21.20 916 X (.54 — .35 ~2.00) (.86 12.86
[
B |BA 0312 | +21.20 0 1.74 458 — 400 019 {0000 23,15
BB, 01.2006 .16 —2.64 ‘ 0000 — 148
BB 01,206 1.16 —2.64 £100 =144
B (1,276 | - 26,83 155 (|, 524 —3.54 019 0.00) 20.38
C | (B (0.296 | + 26.83 | 1648 T 0.77 .39 - 1.77 [ 0109 4279
Coy 0219 12.19 .29 0.07 1255
O 0219 121% 0,29 l 007 1255
N} | 0266 | -82.50 | 1481 X 2.0 035 (4 146 1_{.!_}11_' — 67 K%
D |DC 0296 | +82.50 | -4.17 7.40 2.91 'T' 0175 | —0.17 | %366
DIy 0.219 -3.43 2.41 -4 | —-1.1&
D% 0.21% -3.43 2.41 .14 ~l.1a
DE: - 0.296 | - 66,83 | —4.64 [, ~13.43 3.26 (.46 019 | —81.37
“E |ED 0402 | + 6683 | —2686 " 1232 0.93 1.63 065 | 3956
EE: | 0.299 L -1998 |, ) .69 —049 | - 1978
EE: . 0,299 —-19.9%8 .69 04y | ouTR

¥ The distribution factors for upper column and lower column is same, therefore
several steps in moment distribution are common to both at a joint.

C D E
L D DE ED
Reaction due o udl 5000 oo #9.10 49,10
Feaction due to moment - 3.16 +31.16 +9.29 -9.29
10216 9839
Rp= 20055 kN

The maximum moment is at support D

(Mpe=83.66 kN m and Mpg = - 81.37 kN m) and
maximum axial load in column is also at support, D

Rp = 200.55 kN.

52| Page




Ay g By E,

By
W OMAN: 39 B0 .Jl W OMiH 15 8 LR B ] -[W MIN =15.50 THHH-

o el e Y e e - T ey
A e 1 i5m ¢ 5 M n] L5 M E
A BI E}J’ n!l E:
40,75 i WS ik o ¥
3057 58 10,65 .8
B = o e E
Fixed end moments are as tollows ;
Mep = -83.50 KNm = — Mpe Mpr = —-2683 KkNm = - Mg
- . —
!_juint Member D.F. l FEM. | First C.0. | Second | C.0On | Third ! Final
Dist. Dist. | { Dist. |
A AAL 0.284 15,04k 1.15 ? 0.E7 | 17.02
Adg 0.284 | |
ﬂ AB 0,432 | =52.80 1.75 *—3.% 1.32 -34.03
|
B || BA 0.312 | +52.B0 ~6.13 0.87 =078 : 501,08
II BB; 0.206 — 404 | ~01.51 I - 9.90
| BBs 0205 =i | =0.50 | - 0,90
l]]{L' 0.276 | - 26,83 ~542 | 1.62 — 0,69 | - 30,25
C CB 0,206 +26.83 325 ) -2 088 [ 41.15
O 0219 240 065 | 1524
s (219 2.40 ! 0.65 15.24
Dy .266 | — 8250 202 1. —024 0.7 | =T1.6d
— - - 1 |
| D D 0.796 | + 82.50 - (.53 .46 | — L83 75.19
I | DIny 0.219 ~044 | | —06R | - 1331
| ' DIn 0219 i w144 | -092 [ -1331
. | DE 0296 | ~2683 |~ 1548, -530 | -059 | 165 | —092 | —48.56
E |ED | 0402 | +2683 [ 1078 824 | o33 oo w1z 10.95
| EE; 0.299 ~B02 lf, | 246 | | Goe | 547
| | EF3 0,294 802 | 2.46 nne | ~5.47
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UNIT-III

DESIGN OF RETAINING WALLS AND TANKS

Retaining walls

Retaining walls are usually built to hold back soil mass. However, retaining walls can also be

constructed for aesthetic landscaping purposes.
s

BACK
SOIL

Fig3.1 Gravity retaining wall

Classification of retaining walls
1. Gravity wall-masonry or plain concrete
2. Cantilever retaining wall- RCC (inverted T and L)
3. Counterfort retaining wall- RCC
4. Butress wall-RCC

. . )
LRy
ay Backfill
\
"III‘II :_.!m - '::I - _m_
' Tile I ' :
Gravity RW drain L-Shaped RW
T-Shaped RW
/ Backfill
Counterfort Buttres
] | it
i T ¥ | hole
[ |
— — |
1 |
Counterfort RW Buttress BW

Fig3.2 Types of retaining walls

:
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Importance of retaining walls

Retaining walls are usually meant to serve a single purpose, retaining soil that may erode.
However, retaining walls have become more mainstream for other reasons. Today, they are
used to block off areas such as outdoor living spaces and for landscaping.

Segmental retaining walls

These consist of modular concrete blocks that interlock with each other. They are used to
hold back a sloping face of soil to provide a solid, vertical front. Without adequate
retention, slopes can cave, slump or slide. With the unique construction of segmental
retaining walls, higher and steeper walls can be constructed with the ability to retain the
force of lateral earth pressure created by the backfill soil.

Segmental retaining walls can be installed in a wide variety of colours, sizes, and textures.
They can incorporate straight or curved lines, steps, and corners. They are ideal for not only
slope support, but also for widening areas that would otherwise be unusable due to the
natural slope of the land. Retaining walls are often used for grade changes, and for other
functional reasons such as widening driveways, walkways, or creating more space in a patio
outdoor area.

Segmental retaining walls consist of a facing system and a lateral tieback system. The
facing systems usually consist of modular concrete blocks that interlock with each other and
with the lateral restraining members. The lateral tiebacks are usually geo-grids that are
buried in the stable area of the backfill. In addition to supporting the wall, the geo-grids also
stabilize the soil behind the wall. These two factors allow higher and steeper walls to be
constructed.

Advantages of Concrete Segmental Retaining Walls

e Rapid construction

e Horizontal and vertical curvatures

e Easy grade changes

e A wide variety of colours, sizes and textures

e No need for a concrete footing
Some segmental systems use steel or fiberglass pins, clips or integral lips to create a
continuous facing system. Some blocks are hollow, some are solid. Just about all block

systems permit backfill drainage through the face joints.
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Earth Pressure (P) Earth pressure is the pressure exerted by the retaining material on the
retaining wall. Thispressure tends to deflect the wall outward.

Types of earth pressures

1. Active earth pressure or earth pressure (Pa) and

2. Passive earth pressure (Pp).

Active earth pressure tends to deflect the wall away from the backfill.

GL
RN T

=

-

-

-
I
- i
| =+ —n

Fig 3.2 variation of earth pressure
Factors effecting earth pressure

1. Earth pressure depends on type of backfill, the height of wall and the soil conditions
2. Soil conditions are
a. Dry levelled back fill
b. Moist levelled backfill
c. Submerged levelled backfill
d. Levelled backfill with uniform surcharge
e. Backfill with sloping surface
Earth pressure theories
1. Rankine’s theory
2. Column’s theory
Rankine’s theory:

Rankine assumed that the soil element is subjected to only two types of stresses:
1. Vertical stress (6z) due to the weight of the soil above the element.

ii. Lateral earth pressure (pa)

Rankine's theory assumes that there is no wall friction (& =07, the ground and failure

surfaces are straight planes, and that the resultant force acts parallel to the backfillslope.
In case of retaining structures, the earth retained may be filled up earth or natural soil. These
backfill materials may exert certain lateral pressure on the wall. If the wall is rigid and does

not move with the pressure exerted on the wall, the soil behind the wall will be in a state of
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elastic equilibrium. Consider the prismatic element E in the backfill at depth z, as shown in
Fig.3.3.

Fig. 3.3 Lateral earth pressure at restcondition.

The element E is subjected to the following pressures:Vertical pressure =

g, =z
Lateralpressﬁrt*e: , Where g is the effective unit weight of thesoil.
If we consider the backfill is homogenous then both &, a4 @, increases rapidly with depth z.
In that case the ratio of vertical and lateral pressures remain constant with respect to depth,
that is a, / a0, = &, / yz=constant = K, where ¥_is the coefficient of earth pressure for at rest
condition.
At rest earth pressure
The at rest earth pressure coefficient (E ) is applicable for determining the active pressure in
clays for strutted systems. Because of the cohesive property of clay there will be no lateral
pressure exerted in the at- rest condition up to some height at the time the excavation is
made. However, with time, creep and swelling of the clay will occur and a lateral pressure
will develop. This coefficient takes the characteristics of clay into account and will always

give a positive lateralpressure.

The lateral earth pressure acting on the wall of height H may be expressed as o, =E_ V4.
The total pressure of the soil at rest condition is given by 2=0 5 E,y5*.

The value of ¥ depends on the relative density of sand and the process by which the deposit
was formed. If this process does not involve artificial tamping the value of £ ranges from

0.4 for loose sand to 0.6 for dense sand. Tamping of the layers may increase it upto0.8.

K, =tan’ (45" +¢/2)

From elastic theory, &, = u/(1- ).
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Passive earth pressure:

If the wall AB is pushed into the mass to such an extent as to impart uniform compression
throughout the mass, the soil wedge ABC in fig. will be in Rankine's Passive State of plastic

equilibrium. The inner rupture plane AC makes an angle [45” + .;zﬁfz) with the vertical AB.

The pressure distribution on the wall is linear as shown.
The lateral passive earth pressure at A is 7, = X, y4 . Which acts at a height H/3 above the

base of thewall.
The total pressure on AB is therefore
B = [ pade= || Kyyade = 05K, pi",
Rankine's active earth pressure with a sloping cohesionless backfill surface:
Fig shows a smooth vertical gravity wall with a sloping backfill with cohesionless soil. As

in the case of horizontal backfill, active case of plastic equilibrium can be developed in the

backfill by rotating the wall about A away from the backfill. Let AC be the plane of rupture
and the soil in the wedge ABC is in the state of plasticequilibrium.The pressure distribution
on the wall is shown in fig. The active earth pressure at depth H is which acts parallel to the
surface. The total pressure per unit length of the wall is which acts at a height of H/3 from

the base of the wall and parallel to the sloping surface of the backfill. In case of active
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pressure,

£y =cos ﬁgcos ﬁ—\{(cosg &-rcos? ;ﬁ))f(cos ,5’+.J(cosg 8-cos? -;Ef'))

In case of passive pressure’

K, =cos ﬁ(cosﬁ +\{(E052 8-rcos? .;Ef':l)f (cos g- ,J(l:-::-s2 8- cog? :;Ef'))

Coulomb’s Wedge Theory for Earth Pressure:

Coulomb (1776) developed the wedge theory for determination of lateral earth pressure on a
retaining wall. Unlike Rankine’s theory, which considers the equilibrium of a soil element,
Coulomb’s theory considers the equilibrium of a sliding wedge of soil in the backfill that
separates from the rest of the backfill above a failure plane.The mass of soil in the backfill
above safe/stable slope is unstable and it tends to slide as the wall moves away or toward the
backfill. Coulomb stated that this wedge of soil moves outward (away from the backfill) and

downward in the active case when the wall moves away from the backfill.

ZBEF = 90° £ZBEB'=90-6
y=/BEF -6 - /BEB'=90-§-(90 - =a-¢

4Bl = 90° £GIB=90 -«
A=ZBU ~0-4GIB=90~-0-(0 - =u-9

Retaining wall with a trial slip surface and force diagram

Expression for Coulomb’s Active Earth Pressure:

Referring to the force diagram shown above and applying Lami’s theorem —
Pa/sin(o. — ¢) = W/sinC ...(1)

In Aabc

Substituting this value of angle C in Eq. (1), we get

R _ W - ___ Wsin(a-¢)
sinfe—-¢) sin(180-a +¢+8-5) * sin{180-a +¢+8-8)

- Wsin{c -¢)

b sinfg-¢-8+8) (15.85)
HetmEEy = WJ%XBC“‘D"” (15.86)
In AABC
%25;?: =  LA=90+p-(90-6)=9%0+-%0+0=F+6
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In AABC

BC AB
dnd sme = (A=Nf-(0-0)=N+p-0+0=F+0
Therefore,
Boa ABSNA Jpoiatfed)
+ sinC sin{a - )
In AABD
AD AB
sinB _ sin90 £B=180-(0 +a)
Therefore,
AD=AB%€H=£BﬂnDBﬂ—(ﬂ+a}] =  AD=ABsin(0+a)
sin
Substituting the values of BC and AD in Eq. (15.86), we get
1 sin{f +8} P 1 L sin(B+8)
W=—xAB = AB a W =—xAB
2" sinta —B) sinfB+ajxy = 3 —-——gh{ﬂ_ﬁ)xsm(ﬂ+ajxr
In AABE
; H H
9=_ = —
MR T A
r 5
YH B8, 0ia)

" 2sin? 8 sinla - )
Substituting the value of W in Eq. (15.85), we get

p _YH? sin(f+8)xsin(@+a) __ sin(a-¢)
v 2 sinfxsinfe—B)  sin(e —¢-0+8)

(15.87)

Coulomb’s Theory of Active Earth Pressure:

Figure 15.51(a) shows a retaining wall of height H, with a cohesive backfill, with its surface
inclined at angle  with the horizontal. The back of the wall is inclined at an angle 6 with the
horizontal. Consider failure plane BD at an inclination of a with the horizontal

The wedge of soil ABD tends to slide outward and downward always from the rest of the
backfill in the active case. The wall resists the movement of the wedge and exerts a reaction
Pa, inclined at an angle 6 with the normal to the wall, where o is the angle of wall friction.
The magnitude of total active earth pressure is equal to Pa.

A line ab is drawn parallel to the line of action of W, with the length ab equal to W to some
scale. From b, a line be is drawn equal in length to Cs to the same scale parallel to line of
action of Cs, shown in Fig. 15.51(a). From a, a line ad is drawn equal in length to Cw parallel
to the line of action of Cw. From point c, aline ce’ is drawn parallel to the line of action of R,
that is, at an angle (o — ¢) with the vertical. Another line de” is drawn from point d parallel to
the line of action of Pa, that is, at an angle (6 — d) with the vertical. The two lines ce’ and de”
intersect at point e, which completes the force diagram abcde. The length of line de gives the

value of Pa to the scale of the force diagram for the assumed trial value of a.
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(a) (o)

Coulomb’s theory for active earth pressure: (a) Retaining wall with a trial slip surface and
(b) force diagram, which is constructed based on Bow’s notation.

The procedure is repeated for other failure planes, taking different trial values of a, and the
corresponding values of Pa are determined. The maximum value of Pa, among the trial
values, is taken as the active earth pressure. The corresponding trial failure plane is taken as
the critical failure plane. The active earth pressure acts along the same line of action as Pa,
but opposite in direction. To determine the point of application of Pa, a line is drawn from the
centroid, G, of the wedge of soil ABD parallel to the critical failure plane to intersect the
back of the wall at point P, which is the approximate point of application of Pa.

Coulomb’s Theory for Passive Earth Pressure:

As per Coulomb’s theory, a wedge of soil above a failure plane moves inward and upward in
the passive case when the wall moves toward the soil on the front side of the wall due to
lateral earth pressure. Figure 15.56(a) shows a retaining wall of height H, with a cohesionless

backfill, with its surface inclined at an angle § with the horizontal.

The back of the wall is inclined at an angle 6 with the horizontal. Consider the failure plane BC
at an inclination of o with the horizontal. The wedge of soil ABC tends to slide inward and
upward. A pressure is exerted on the wall, which is the passive earth pressure Pp, inclined at an
angle 6 above the normal to thewall, where 9 is the angle of wall friction.

The total passive earth pressure is determined through Coulomb’s theory by considering the
equilibrium of the wedge of soil ABC.

The forces acting on the wedge are as follows:

i. Weight (W) of the wedge of soil ABC acting vertically downward.

ii. The reaction (Pp) on the contact surface AB of the wall with the backfill, acting at an angle

A above the normal to the back of the wall.
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iii. The reaction (R) on the trial failure plane BC, which is the contact surface of the wedge
with the rest of the back-fill. The reaction R acts at an angle ¢ above the normal to the surface
BC. This reaction acts upward and outward, opposing the movement of the wedge.

A trial value of o is assumed and the force diagram is constructed. Figure 15.56(b) shows the
force diagram abc. A line ab is drawn parallel to the line of action of W, with the length ab
equal to W to some scale. Now, a line bc’ is drawn parallel to the line of action of P, that is, at
an angle (0 — 8) with ab. Another line ac” is drawn parallel to the line of action of R, that is, at
an angle (o — ¢) with ab. The two lines bc” and ac” intersect at point ¢, which completes the
force diagram abc. The length of line be gives the value of Pp to the scale of the force diagram

for the assumed trial value of a.

(4]
¥l

(=) ; {b)

Column’s passive earth pressure for a cohesionless backfill retaining wall and force diagram

The procedure is repeated for other failure planes, taking different trial values of a, and the

corresponding values of Pp are determined. The minimum value of Pp among the trial values,

is taken as the passive earth pres-sure. The corresponding trial failure plane is taken as the

critical failure plane. The final expression for Coulomb’s passive earth pressure is given by
yH?

P, =K, T

- sin’ (6 — )
P sin® @sin(@ + 8)[1—JIsin(¢ + & )sin(¢ + §)] / |sin(6 + 8)sin(6 + #)| F

K

Coulomb’s theory assumes that the failure surface is a plane surface. The actual surface is
found to be a curved surface, being either a logarithmic spiral or a circular arc. In the passive
case, however, the error involved in the estimation of Pp is large when a plane failure surface
is used for values of & > (¢/3), which is the usual case. The value of Pp estimated is more
than the actual value and is therefore on the unsafe side. Coulomb’s theory is therefore

generally not used for the estimation of passive earth pressure.
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Analysis for dry back fills

Maximum pressure at any height, p=kaY'h Total pressure at any height from top,
Pa=1/2[kaYh]h = [kaYh2]/2

Bending moment at any height M=paxh/3= [kaY'h3]/6

Total pressure, Pa= [kaY'H2]/2

Total Bending moment at bottom, M = [kaY'H3]/6

GL

:2:- *
I

Where, ka = Coefficient of active earth pressure
= (1-sin©)/(1+sin©)=tan26
= 1/kp, coefficient of passive earth pressure
¢= Angle of internal friction or angle of repose
Y'=Unit weigh or density of backfill
If = 30, ka=1/3 and kp=3. Thus ka is 9 times kp

Backfill with sloping surface

p.= k_YH at the bottom and isparallel to inclined surfaceofbackfill
a a

, G

= Teoso- gmews] || [y 1 B
1cose+ Jeos?6 —SOS @ Il 1 = “ e

Where 8= Angle of surcharge : = '_’_;'

Total pressure at bottom — e A

P~k yH/2 | e

Fig.3.3 Soil pressure due to inclined surcharge

Stability requirements of retaining walls
As per IS 456-2000 following conditions must be satisfied for stability of retaining wall
1. Check against overturning

Factor of safety against overturning
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=My / M 21.55(=1.4/0.9)

Where,
Mg =Stabilising moment
or restoring moment
Mg =overturning moment

As per 1S:456-2000,
Mp>1.2 M, ch.DL + 1.4 M, ch.IL

> .
0.9 Mp >1.4 My, chiL

'—r.ill.liuli!.iuu.

OWERTILIRMNIMG OF WAaALL

2. Check against Sliding

FOS against sliding

= Resisting force to sliding/Horizontal force causing sliding

= u>_W/Pa greater than or equal to 1.55 (=1.4/0.9)

As per 1S:456:2000

1.4 = p( 0.92-W)/Pa
Design of shear key

=

-

i
I

T

e s W T

Friction o 3 W
SLIDING OF WaALL

Tn case the wall is unsafe

against sliding

/ L
I."I I'nl )
W A\ po=pn’ 45 +/2
| '|I —_ P
1 JIII [ where p_= Unit passive
| H+a \ Pe 1 Pb
f e P, pressure on seil above
: *—t—— she aring plane AB
| ANRIE}:CDN I'”. P= E.n‘thpre&slu‘e atBC
4 i I.”‘ ....... r .
B KR R=Total passive
g=45+ 42 * (Ha) resistance=p.xa
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If >_w = Total vertical force acting at the key base

® = shearing angle of passive resistance
R= Total passive force = ppxa
P A:Active horizontal pressure at key base forH+a

L W=Total frictional force under flatbase
For equilibrium, R + U2 W =FOS xPy

FOS= (R + pXW)/ P, >1.55

Pressure distribution

I R
[
[
|| H
/ W H
[N
h '.lC. II| -1}1"'1’1 3_1"..."1
*—&ﬁi l/ , P
| K i\
T & 1?‘”3 kY r
- € b6
/!
4 b o2 *
T I i —— b Pressure belowthe
P e L LJL___ " t Retaining Wall
R l—— —

Let the resultant Rdueto) W andP_

lieat a distance x from thetoe.

X=>M/2W,

>'M = sum of all moments abouttoe.

Eccentricity of the load = ¢ = (b/2-x) <b/6

=Ww 1 Ge .
5 b =lero

Minimum pressure at heel = P min =
For zero pressure, e=h/6, resultant should cut the base withinthe middlethird

=W 14 Ge
b b

Maximum pressure at toe = P min =
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Depth of foundation

Rankine’s formula:

 § b &

. 2
D= SBC| 1-sing
y | 1+sing

- ﬁkj Df" 1T

Y

Preliminary proportioning
1. Stem:Top width 200 mm to 400 mm
2. Base slab width b= 0.4H to 0.6H, 0.6H to 0.75H for surcharged wall
3. Base slab thickness= H/10 to H/14
4. Toe projection= (1/3-1/4) Base width

Design of Cantilever retaining wall
Stem, toe and heel acts as cantileverslabs

Stem design: M, =psf (k,yH/6)

Determine the depth d from M, =M =de2

u,lim
Design as balanced section and findsteel
M,=0.87 fyAst[d-fyAst/(kab)]
Heel slab and toe slab should also be designed as cantilever. For this stability analysis
should be performed as explained and determine the maximum bending moments at
thejunction.

e Determine thereinforcement.

e Also check for shear at thejunction.

e Provide enough developmentlength.

e Provide the distribution steel

Example 3.1 Design a cantilever retaining wall a retain an earth embankment with a
horizontal top 3.5 m above ground level. Density of earth = 18 kN/m?®. Angle of internal
friction ¢ = 30°. SBC of soil is 200kN/m°. Take coefficient of friction between soil and
concrete = 0.5. Adopt m20 grade concrete and Fe 415 steel.

Solution:
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H, = gg m y=18 kN/m’2 $=30°  SBC, g, =200 kN/m
1=0. S =20 N/mm f, =415 N/mm?
Coefficient of active earth pressure

: g = Ll=sing _1-sin30 1
1+sind 1+sin30 3
Minimum depth of foundation is

9o 12 200 (1)2
Yoin = <-kg =—x| =] =1
min y 18 3 23 m

Provide depth of foundation as 1.25 m
Height of retaining wall =3.5 + 1.25=4.75m

Preliminary Dimensions of Retaining Wall
B=048 Hto 0.56 H=2.375 mto 2.66 m

Say b=25m
Toe projection =0356=075m
Thickness of base slab = Thickness of stem% 2 = ﬂ say 0.4 m
W12 12 B

Let top width of stem be 0.2 Fig 3.4 shows dimensions of the retaining wall selected and Fig

3.5 shows various forces on the retaining wall

10.21
: ..I.--.ll..‘..-...:
RESTTS g
'
;
]
435 475 L '
v
PL ’ \
1]
| e
sy '
fa—0.75—> 04 P———1-35"—"’"f
]
e 25 > I
Fig 3.4 Fig 3.5

Check for stability
Various vertical loads acting on the retaining wall, their distances from overturning point O

and the moment of these forces about o are shown in th table below
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Welght b b=~~~ " [T+ =
Weight of backfill Wi =135x435x 18=105.7 25135 s -
" Rectangular portion = ~
foloem 2= 02x435x2521.75 0.7540.4-0.1=1.05 284
4 Triangular portion = 2
ﬁ portion w3= 3 X02x435x25 = 1038 075+ 2 0220388 961
n;.--_of stem
Base slab We=04X25%25=25 25
£ 2 3125
2 s Z M, = 256.6kN-m
Horizontal pressure Py = -%k_ v H?

= %x%xlsxu}s’ = 67.6838 kN

Overturning moment, M, = P, % = 67.688 x 4—;'—5- = 107.17 kN-m

As per IS 456-2000, factor of safety for over wming is

09 x 2566
F 22 = > 1.
1 = 10717 2.15>14 Hence O.K.
O-WZZW 09%05x1
Fy = =- 3(—63'3:-’-1.09<l.-1

Py 67.688
Hence shear key is to be provided.
Pressure Under Base Siab
. Total moment about point O
=M, -M, =256.6 - 107.17 = 149.43 kN-m
Total vertical load = 163.33 kN

Horizontal distance from O where resultant intersects the base line

%

Sw_! K

- ] 3 e

125 I 125 I
Fig. 10.12
T PO 5% m
16333
o 25

.. Eccentricity e==--0915=0335m

-« Maximmum pressure

w
Py = —z'b—[x-pi‘bi] - 162.3’:3{1 + 6"2(?35] = 117.86 kN/m?

- 163.33[l 3 GXO.33S] = 12.8 KN/m?

Minimuin pressure, P2 25 2s

Thus p; < SBC of soil
and p,, is positive.
Hence satisfactory.
Design of Stem
Stem acts as a cantilever of height 4.35 m subject to uniformly varying load of
=k, vh
Maximum moment at the base of cantilever
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k, T h? x%:%k, YR

Ot N

x%x18x4.35’ = 82.31 kN-m

2 M, =15x823]1= 123.47 kN-m
Since M20 concrete and Fe-415 steel are used

0.138 [, bd® = M,, for balanced section
. 0.138 x 20 x 1000 x d* = 123.47 x 10°
d=12115

Depth d = 350 mm and overall depth D = 400 mm give sufficiently under reinforced section.
Area of steel required is obtained from

A,
M, = 087 f,A,,d(l = ?’:)

123.47 x 10° = 0.87 x 415 X A,, x 350 (1 X 415]

1000 X350 20
977 = A,,(l - Ay )
16867.5
or A2 - 16867.5 A,, + 977 x 16867.5=0

: A, = 1041 mm’

Using 12 mm bars,

3

X 122

1041
Provide 12 mm bars at 100 mm c/c.

s= x 1000 = 108 . mm

Distribution Steel

- 200 +400
2
A,,s%‘:—:-xlowxm=360m2
Providing 180 mm? on each face and using 8 mm bars
‘ -

—x8?
4

Average thickness of wall = 300 mm

s= x 1000 = 279 mm

Provide 8 mm bars at 270 mm c/c on tension face

A mesh of 8 mm bars @ 270 mm is given on compression face of the wall.
Curtaliment of Vertical Bars

Bending moment is proportional to cube of depth of filling and thickness varies linearly from 200 mm
at top 400 mm at a depth of 4.35 m. One third of vertical bars may be curtailed at a height of 1.5 m
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from baseandanother%rdatahcigbtof3mfromd)ebaseasshowninﬁg.

Check for shear: V=Py=107.17kN
. V, = 1.5 x 107.17 = 160.75 kN
= 160.75x1000 _ 2
&= Joooxapo = %4 N-mm
X 122 x100
P oxio0 = 0283
T.=0.4 N/mm

No shear rcmforccment 1s required.

Pressure dia.gram under

B8.3 kN/m
e 075 loa peoo 18 Ly

gasi
'_*___L__ —2s
117136
Fig. 10.13
Pressure at the face of toe = [2.8 4 E{ll?ﬂﬁ— 128) = 86.35 kN/m?

Dividing it into a udl of 12.8 kN/m and a lmurly varying load

the base varies from 117.86 kN/m’ to 12.8 kN/m? as shown in Fi

0.752 :
M = 8635 x = +%xn.?5x[l 17.86 — 86.35) x -i-xn:ri

=30.19 kN-m
M, = 1.5 x 30.19 = 45.285 kN/m
d =350 mm

45.285x 10°=0.87 x 415 x A, x 350 [ 1- —_ A= 415
1000 x350 20

358.36 = A,, (1 - A ]
16867.5

or A’ - 16867.5 A, + 16867.5 x 358.36 = 0
A, = 366 mm*
- 0.12 2
. Minimum = ﬁx 1000 x 400 = 480 mm
& A, =480 mm’
Using 12 mm bars

1l")cIEI

5=

X 1000 = 235 mm

Provide 12 mm bars at 300 mm c/c in both directions.
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pesign of Heel Slab

jts width is 1.35 m. Pressure varies from 128
column as shown in Fig. 10.13.

Weight of back fill =yH, =18x435=T783 kN/m
Self weight =04 x 1 %25 =10 kN/m

- Total downward load =783+ 10 = 88.3 kN/m

+ Maximum bending momeut

KN/m? on outer edge to 69.53 kN/m? at the face of the

2 2
=88.3xpzi--123x1§2§—-%x(6953-l2.8)135><%><|-35

= 56.04 kN-m
& M, = 1.5 x 56.04 = 84.06 kN-m
Hence area of steel required is given by
84,06 X 10° = 0.87 X 415 X A, X 350| 1 = —t— 313
' 1000 x 350 20
6652 =A, [I ” _ﬁL]
16867.5
or A, - 168675 A, + 6652 x 16861.5 = 0
S A, = 693 mm’
Provide minimum reinforcement of 12 mm bars at 160 mm c/c in both directions.
I}nlkn of Shear Koy
Pressure at face of shear key = 86.35 kN/m
Coefficient of passive carth pressure
1
o—u)
G k,
If ‘a’ is the projection of shear key, resistance offered by passive carth pressure
=k, X vertical pressure
=3x 8635 xa=259.05 kN
~ Factor of safety against sliding
094 Y, W +259.05a
F,= =14
| 67.688
e 09x05x163.33 + 259.05a _ 14
67.688
a=0085m
Provide 200 mm deep shear key.
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Fig 3.6 Reinforcement details

Counterfort retaining wall

Counterforts are provided at 3 to 3.5 m interval and they act as T-beam subjected to backfill,
paximum value being at the base slab. The moment of ék,‘y h’ X L, where L is the spacing of

counterforts is to be resisted by counterfort. The horizontal thrust tries to separate wall from the

counterforts and hence horizontal ties are provided to connect stem and counterfort. Similarly the
mtlcal downward load on heel slab tries to separate heel slab from counterfort and hence vertical ties
+re provided in the counterfort. The design procedure is illustrated with the example below:

Stem
Counterfort

Example 3.2 Design a counterfort retaining wall if the height of wall above ground level
is 5.5 m. Unit weight of back fill = 18 kN/m®. Angle of internal friction ¢ = 30°. SBC of
soil is 180kN/m®. Keep spacing of counterforts as 3 m. Take coefficient of friction
between soil and concrete = 0.5. Adopt M20 grade concrete and Fe 415 steel.

Solution:
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Hy=35.5 m, q, = 180 kN/m’, o= 130°, y= 18 kN/m’
. ve earth o 1-sing
Coefficient of active earth pressure k, = e
_1-sin30 _1
" 1+sin30 3

. Minimum depth of foundation

2
LT 20 0 L RTT
J"mh"‘kl_r (3]3‘13

" Provide depth of foundation = 1.3 m
Total height of retaining wall H=55+13=68m

Base width is kept 0.5H to 0.6H
In this case it may be from 3.4 m to 4.08 m
Let base width b=40m
1,1
Toe projection = Iﬂ: -s-th b
Let it be =U'.3ﬂ___.o .
Width of counterforts =0.03H 0 0.
Let it be = 300 mm
Thickness of stem = Thickness of base slab = 7%
Say d:!ﬁﬂmmudD-ﬂﬂDm

|

0
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Fig 3.7 Counterfort retaining wall
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Table below shows weight, distance from overturnin

' “she g point ‘0’ [toc edge) and moment about *0'
by various stabilizing forces

SI. No. Force | Magnitude in KN X kel Mok kNem
1| W, =Weightof back fill | 27x65x18=3159 |4 3“23 =255|  80ss
2 | W,=Weight of stem 0.3%6.5%25= 4875 095 I 463
3 | W= Weight of base slab | 0.3%4.0x25= %0 20 600
IW = 304.65kN IM, =911.8 kN

| i essure
Overturning moment due to horizontal backfill earth pr

~h 1 "1 .ex68° =314.4 kN-m
M, = k.—6-——3x6

. Factor of safety against overtuning

M, O09x9118 _ , ,
a7
Hence O.K.
2
Sliding force Pu= b 1;-:%:(%):63’ = 13872 kN
Resisting force =k (09W, + W, + W)
=0.5(0.9 x 315.9 + 48.719 + 30) = 181.51
- Factor of safety against sliding
= L L iacia
138.72

Hence need key. Provide a key of depth 300 mm

Pressure from Soil

Total moment about point 0 =M,-M,
=911.8 - 314.4 = 5974 kN-m
.. Horizontal distance at which resultant intercepts base

e= %-h%—uu = 0.486 m

Wi 6e] 39465 c.xo.um]
e B8] 2 o8
= 170.6 kN/m” < 180 kN/m?, Hence O.K.
9
P = Z:‘ [1 - -‘L—'. =26.7 kN/m?, pusitive. Hence O.K.

Deslgn of Stem .
Stem acts as a horizontal slab of span 3 m. Referring to Fig. 3.17, Maximum horizontal pressure on stem

- k,yH,:%xleﬁ.s = 39 kN/m*

2
Maximum moment M= 1-9-;—3* = 29.25 kN-m
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(a)

M, ym = 0.138 f, bd® = 0.138 x 20 x 1000 x 260
= 186.57 x 10° N-mm > M,
Hence thickness ol stcm is sufficient. Now,

’ Ayl
M, = 087f,A, d[l L x fd]

43.0 3 10 = 0.87 x 415 x A, % 260 [ 1 - — 2a__, 15
1000260 20

12530
A= 12530 A, +467.65 x 12530 =0
A, = 486 mm’
Using 12 mm bars, spacing required is

467.65 = A, ([ - ——ﬁ-ﬂ’—]

2122
=4 %1000 =232 mm
T

.~ Provide 12 mm bars at 225 mm c/c.
Distribution steel = i:;]rﬂz' x 260 % 1000 = 312 mm’
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Using 12 mm bars, spacing required is

X1

S=—4~3—n—x1000=362mm

Provide 12 mm bars at 300 mm dc. -
12 mm bars are provided at 300 m'm in both direction on the front side also. It takes care of +ve

moment in the middle which is equal to 3—91—2 %3

2
kN-m
check for Shear

Maximum shear force at the face of counterfort

39%x(3-03

= (2 o )=52.6SI<N
V,=1.5%5265 =79 kN

- 79x1000

" 260 %1000

= 0.303 N/mm?

LvETY

225 %260
1.=032 N/mm’, Hence safe.

lncrease the spacing to 300 mm at a height of 1.5 m, since pressure (hence bending moment)
reduces linearly towards the top of stem.

Percentage reinforcement p =

X100 = 0.193

Design of Toe slab

Figure 3.8 shows variations of pressure under base slab

‘IEl 5 kM/m

/L]/DU/U/U}! 26.7 watim

LEL-C R IR

Fig 3.8
, 08 1 2
Cantilever moment -I'H'?::-:—E-+ !K{ITD.S-ML?}HD.EH 3 x08
= 51448 kN-m
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M,=15x 51488 = T1.232 kN-m < M

Hence depth of 260 mm is sufficient e

77.232 % 10° = 0.87 x 415 x A, x 260 [, .
1000 % 260~ 20
822.7 =A”[l— A ]
12530
At 12530 A, + 822.7 x 12530 = 0
, A, = 885 mm?
Using 16 mm bars,
n
- % 16°
5= j—ﬂﬁ—xlm{] =227 mm

Provide 16 mm bars @ 220 mm o/c.

Check for Shear
Critical section is at a distance 4 = 260 mm from the face of stem. Pressure at this point

(141.7 - 26.7)
4

=267+ % (3.2 +0.260) = 126.2 kN/m?

. Shear force per metre width of e

V= %{l?ﬂ.j +1262) % (0.8 — 0.26) = 80.10 kN
V, = 1.5 % 80.10 = 120,15 kN

" - 120.15% 1000 _ PT
1000 = 260
T 16t
P infi ent p = xm = 0.352
ercentage reinforcement p = 390 260 -

From Table 19 in IS 456 - 2000,
- 1.= kX7, =108 x 041 = 0442 Nimm’ <1,
-, Not safe in shear. Increase the depth to d =300 mm
D = 350. Since the additional load directly gets transferred to soil, without creating SF and BM, the
pressure calculation need not be repeated. For d = 300 mum,
12045%1000

" 1000 x 300

Hence safe.
Spacing of main bars may be increased to 250 mm c/c.
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pesign of Heel Siab

Here 2lso, since additional thickness of heel slab do not create SF and BM, the same analysis is
paintained but for the design the effective depth is taken as d = 300 mm.

Soil pressure af junction with stem

705 -
= za.1+“—”'5“—m_ﬂ %29 = 13| Nmm®
Load from back fill =6.5% 18 = 117 kN/m?
Load from 300 mm thick slab (self weight)

=03%1x25="7.5 kN/m®
wTotal downward load =117 4 7.5 = 124.5 KN/
Maximum downward pressure intensity is at the edge
Powy = 1245 - 267 = 97.8 kNim?

Fi
M=978x ?—,_ = 7335 kN-m

M, =15 %7335 = 110.0 kN-m
*. Longitudinal main bar required for d = 30 min, slab

110.0x 10° = 0.87 X415 x A, %300 l--—h—"—nﬂé
1000%300 20

A
1016 = -
A‘[] IHS'.-'.E]

o At~ 144578 x A, + 1016 X 144578 = 0
A, = 1100 mm?

Using 16 mm bars, spacing required is

E:ﬁﬁ‘

1= i—-—x!ﬂmzlﬂimm
1100 :

Provide 16 mm bars at 180 mm spacing near the edges. Since downward pressure reduces linearly,
the spacing may be increased to 300 mm towards junction.
Disttibution steel of 12 mm diameter bars @ 225 /e is provided al right angles to main bars.

Design of Counterfort
Reinforcements are required for beam action and for, against separating force in borizontal and vertical
directions,

[2) For beam action: Counterfort behaves as T-beam of varying section, cantilevering out of the
base.
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(<) Reinforcement in stem and counterfort (péan view)
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CIRCULAR WATER TANK

Introduction:
Storage tanks are built for storing water, liquid petroleum, petroleum products and similar

liquids. Analysis and design of such tanks are independent of chemical nature of product.
They are designed as crack free structures to eliminate any leakage. Adequate cover to
reinforcement is necessary to prevent corrosion. In order to avoid leakage and to provide

higher strength concrete of grade M20 and above is recommended for liquid retaining

structures.
WATER TANK
BASED ON BASED ON SHAPE
PLACEMENT OF TANK
OF TANK — ——
1. RESTING ON GROUND 1. CIRCULAR
2. UNDER GROUND 2. RECTANGULAR
3. ELEVATED 3. SPHERICAL
4. INTZ

5. CONICAL BOTTOM

To achieve imperviousness of concrete, higher density of concrete should be achieved.
Permeability of concrete is directly proportional to water cement ratio. Proper compaction
using vibrators should be done to achieve imperviousness. Cement content ranging from 330
Kg/m® to 530 Kg/m? is recommended in order to keep shrinkagelow.

The leakage is more with higher liquid head and it has been observed that water head up to 15
m does not cause leakage problem. Use of high strength deformed bars of grade Fe415 are
recommended for the construction of liquid retaining structures. However mild steel bars are
also used. Correct placing of reinforcement, use of small sized and use of deformed bars lead
to a diffused distribution of cracks. A crack width of 0.1mm has been accepted as permissible
value in liquid retaining structures. While designing liquid retaining structures
recommendation of “Code of Practice for the storage of Liquids- IS3370 (Part I to IV)”
should be considered. Fractured strength of concrete is computed using the formula given in
clause 6.2.2 of IS 456 - 2000 ie., f,=0.7\fu« MPa. This code does not specify the permissible
stresses in concrete for resistance to cracking. However earlier version of this code published
in 1964 recommends permissible value as o= 0.27 Vfy for directtension and

oeni=0.37 Vfy for bending tensile strength.

Allowable stresses in reinforcing steel as per IS 3370 are
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os= 115 MPa for Mild steel (Fe250) and o= 150 MPa for HYSD bars(Fe415)

In order to minimize cracking due to shrinkage and temperature, minimum reinforcement is
recommended as:

For thickness <100 mm = 0.3%

For thickness > 450 mm = 0.2%

For thickness between 100 mm to 450 mm = varies linearly from 0.3% to 0.2%

For concrete thickness > 225 mm, two layers of reinforcement are placed, one near water face
and other away from water face.

Cover to reinforcement is greater of i) 25 mm, ii) Diameter of main bar.

In case of concrete cross section where the tension occurs on fibers away from the water face,
then permissible stresses for steel to be used are same as in the analysis of other sections, ie.,
o=140 MPa for Mild steel and c4=230 MPa for HYSD bars.

In this method the concrete and steel are assumed to be elastic. At the worst combination of
working loads, the stresses in materials are not exceeded beyond permissible stresses. The
permissible stresses are found by using suitable factors of safety to material strengths.
Permissible stresses for different grades of concrete and steel are given in Tables 21 and 22
respectively of 1S456-2000.

The modular ratio ‘m’ of composite material ie., RCC is defined as the ratio of modulus of
elasticity of steel to modulus of elasticity of concrete. But the code stipulate the value of
‘m as m = 280/ccbe,where obc is the permissible stress in concrete

To develop equation for moment of resistance of singly reinforced beams, the linear strain

and stress diagram are shown below

15 s = T

- - x E_ Tebe 3
c
K T

T ot e e
=
G B B z ——J'—'T

_ £, = {]jE“ Stress
Section : Diagram
Strain
IMNiagram
M
AL :—_d; Let p be the percentage of steel expressed as
P
0 =1'DﬁAﬂ ~100 M iziﬂkcrchc
T bd o,.idbd o,
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The neutral axis depth 1s obtained from strain diagram as

X .. /E. mao . ma,
= —c e —" " golving for x; X = |:—‘tt }d =kd
d_K G!.t ! Ez st mo—cb-: +Gst
m{j:h: : :
where, k= . k15 known as neutral axis constant
ma,. +0,

The lever arm z=d-x/3 = d-(kd/3)= d(1-k/3) = 3d. where, 1=1-k/3; j 15 known as lever
arm constant

C=": Oupebx: T= 0t A

Moment of resistance M=C z=T z

Consider, M=C z = (¥2 Gabx) 1d = (¥2 Gapcbkd) 3d = (V2 Gancky) bd* = Qua bd*

Where, Qua 15 known as moment of resistance factor for balanced section.

Now consider M=T z = 04 A 3d;

M
= o : Let p+ be the percentage of steel expressed as
Oyl

100A ~100 M 1 _ 50ko,
G, jd bd o

5t

Pioar =
at

Design constants

Concrete | Steel Oche Cst k ] Qbal Pbal

Grade Grade

M20 Fe250 7 140 04 0.87 121 1.00

. Fed15 7 230 0.29 09 091 0.44

M5 Fe250 85 140 04 0.87 148 0.68
Fed4l5 85 230 0.29 09 1.1 0.533

Liquid Retaining Members subjected to axial tension only:

When the member of a liquid retaining structure is subjected to axial tension only, the
member is assumed to have sufficient reinforcement to resist all the tensile force and the
concrete is assumed to be uncracked.

For analysis purpose 1m length of wall and thickness‘t’ is considered. The tension in

the member is resisted only by steel and hence

A, =l and T< 1000 t g H{m-1)Ay Gyor t 2 I 1—{m—lj&
g 1000 ]

5t Ul:t
Mimmum thickness of the member required 1s tabulate 1n table 6.2
Table 6.2 Minimum thickness of members under direct tension (Uncracked condition)

i

Grade of Thickness of members in mm for force Tin N
concrete Mild steel HYSD
M20 T/1377 T/1331
M25 T/1465 T/1423
M30 T/1682 T/1636
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Liquid Retaining Members subjected to Bending Moment only:

For the members subjected to BM only with the tension face in contact with water or for the
members of thickness less than 225 mm, the compressive stress and tensile stresses should
not exceed the value given in IS 3370. For the member of thickness more than 225 mm and
for the face away from the liquid, this condition need not be satisfied and higher stress in
steel may be allowed. The bending analysis is done for cracked and uncracked condition.
Cracked condition: The procedure of designing is same as in working stress method except
that the stresses in steel are reduced. The design coefficients for these reduced stresses in
steel are given below.

Design constants for members in bending (Cracked condition)

Concrete | Steel Cehe Tt k ] Qpa Pénal
Grade Grade
For members less than 225 mm thickness and tension on liquad face

M20 Fe250 7 1%5 0.445 0.851 133 1.36
) Fedls 7 150 0.384 0.872 1.17 0.98

For members more than 225 mm thickness and tension away from liqud face
M20 Fe250 7 125 0427 0.858 128 12
) Fed15 7 190 0329 0.89 1.03 0.61

Circular Tanks resting on ground:
Due to hydrostatic pressure, the tank has tendency to increase in diameter. This
increase in diameter all along the height of the tank depends on the nature of joint at

the junction of slab and wall as shown in Fig6.5

! = ll..-'_:_ v
\
- —

L
________
———]

_____

Tank with rigid base
When the joints at base are flexible, hydrostatic pressure induces maximum increase

in diameter at base and no increase in diameter at top. This is due to fact that
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hydrostatic pressure varies linearly from zero at top and maximum at base.
Deflected shape of the tank is shown in above fig. When the joint at base is rigid,
the base does not move. The vertical wall deflects as shown in above fig

Design of Circular Tanks resting on ground with flexible base:

Maximum hoop tension in the wall is developed at the base. This tensile force T is
computed by considering the tank as thin cylinder

i D ; ;
T=yH—: Quantity of remnforcement

required 1in form of hoop steel 1s computed
T +HD/2
T as A, =—=
Ty Tyq
When the thickness of the wall 15 less than
225 mm, the steel placed at centre. When the
thickness exceeds 225mm. at each face A2
T of steel as hoop reinforcement 1s provided

or 0.3 % (minimum)

In order to provide tensile stress in concrete to be less to be less than permissible stress,
the stress in concrete 15 computed using equation

_ T _ vHD /2
A +(m-DA, 1000t+(m-1)A_

o, If 6. = Oy where G=0.27f4, then the

section is from cracking, otherwise the thickness has to be increased so that oc is less than
ocat. While designing, the thickness of concrete wall can be estimated as t=30H+50 mm,
where H is in meters. Distribution steel in the form of vertical bars are provided such that
minimum steel area requirement is satisfied. As base slab is resting on ground and no
bending stresses are induced hence minimum steel distributed at bottom and the top are
provided

Example3.3

Design a circular water tank with flexible connection at base for a capacity of 400000
liters. The tank rests on a firm level ground. The height of tank including a free board
of 200 mm should not exceed 3.5m. The tank is open at top. Use M 20 concrete and Fe
415 steel.

)} Plan at base
i) Cross section through centre of tank.
Solution:

Step 1: Dimension of tank
Depth of water H=3.5-0.2 = 3.3 m Volume V = 400000/1000 = 400 m3
Area of tank A = 400/3.3 = 121.2 m2
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Diameter of tankk D = I—= 1242m =153 m
T

The thickness is assumed as t = 30H+50=149.160 mm
Step 2: Design of Vertical wall

Max hoop tension at bottom T =vH i= o ms 214 3kN
7 7
T T _2145x10° )
Area of steel A, = = =S T 1430 mm”
I:‘jiT I:‘jiT 150

Minimum steel to be provided
Asimin=0.24%0f area of concrete = 0.24x 1000x160/100 = 384mm?
The steel required is more than the minimum required
Let the diameter of the bar to be used be 16 mm, area of each bar =201 mm? Spacing of 16
mm diameter bar=1430x 1000/201= 140.6 mm c/c
Provide #16 @ 140 c/c as hoop tension steel
Step 3: Check for tensile stress
Area of steel provided Asproviges=201x1000/140 = 1436.16 mm’

280 _ 280
30, Fw T

Modular ratio m= =13.33

1 L1935 1Ur a
=12N/mm

1000t + (m — 1)A B 1000 =160 + (13.33 — 1)1436

Permissible stress GuFO.E?*\'If'{k= 1.2 N/mm?

Stressin concrete G_=

Permissible stress c=0.27Vfu= 1.2 N/mm?

Actual stress is equal to permissible stress, hence safe.

Height from top Hoop tension As= Tlog Spacing of #16
T =yHD/2(kN) mm c/c

2.3 m 149.5 996 200

1.3m 84.5 563.33 350

Top 0 Min steel (384 mm?) | 400

Step 5: Vertical reinforcement:
For temperature and shrinkage distribution steel in the form of vertical
reinforcement is provided @ 0.24 % ie., A4=384 mm?.
Spacing of 10 mm diameter bar = 78.54x1000/384=204 mm c/c [ 200 mm c/c

Step 6: Tank floor:

As the slab rests on firm ground, minimum steel @ 0.3 % is provided. Thickness of slab is
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assumed as 150 mm. 8 mm diameter bars at 200 c/c is provided in both directions at bottom

and top of theslab.
-——160

}:ijl6@4OOCC
o500

P

1000
+10ekz200c_c +16@350c_c

1000
ol | F1lE6@200C_C

1000
#lerkl40c/c

i i

o :}) 92 P Fn {Un %% % h 150
= |
+8200c _c OTH WAYS

Sectional Elevation

#16@140c/c

#10@200c/c

Plan at base
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Example 3.4 Design a circular water tank for a storage capacity of 360000 litres. The
joint between the wall and the floor of the tank is not monolithic. The tank is not

monolithic. The tank is to rest at ground level. Adopt M 20 grade of concrete.

Sol. Required capacity of tank = 3,60,000 litres

. Volume of tank = 31—5000” 0 = 360 m3

Assuming the depth (#) of the water in the tank to be 3 metres, floor area
of the tank

= ﬁ==l20m2

: <o 3
Let (D) be the internal diameter of the tank
r -
~ L "..-_"“"43 T¥"D"_ 120

D 2\’_11(;_:&_1 =12"36 msay 124 m .

Max. hoop tension is given by
T =5 w.HD.

Let wt. of water {(w ) be
= 10 kMN/m>

T =3x10x3x12°4
= 1B6 kN =186 < 103 N
Arca of hoop reinforcement is given by
T _ 186 x10°
o, 115

Spacing, using 16 mm ¢ hoops (A, =201 mm?)
~ _ 201 x 1000
- 1617

201 x 1000
A, acwally provided T TR 1675 mm?

A, = = 1617 mm?

= 124 mm say 120 mm c/c

To fix thickness of wall
For M 20 grade of concrele
m =13
o . = permissible dircet ensile suress in
concrete = 1°2 N/mm? :

The thickness of the wall () can be obtained from egration
T

. i
@ t x 1000 + (m — 1)A, =
186 = 102 _

or % 1000 + (13 — 1) x 1675

which gives ¢ = 135 mm
(if) Thickness of the wall from empirical formula
t =30H +50 =30x3+ 53 =140 mm
(#f) Minimum thickness at per norms = 150 mm
N mﬁlﬁmc adopt thickness of wall = 150 mm uniformly, throughcut the height
o ,
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Since the thickness of wall is less, the hoof reinforcement will be placed at
the centre of the wall thickness.

Since the waler pressure and hence the hoop tension decreases towards top,
the area of reinforcement can be reduced toward top.

Curtailment of reinforcement :

Value of hoop tension at this depth
T, == 10%2x% 124 =24 kN

3
A, = 1_2%5__1-9__ = 1078 mm=
201 x 1000
Spacing of 16 mm ¢ bars = o8 - 186 mm say 180 c/fc
A, at 1 m below Lop = :-21- x 1078 = 539 mm?
. 201 x 1000 e
Spacing of 16 mm ¢ bars = — a3~ = 372 say 370 mm cfc

Vertical reinforcement : :
Percentage of distribution reinforcement to be provided in the vertical
directon
. A 150 — 100% _ .
—03-01 (55—) =03%
0°29 x 150 x 1000

Area of distribution bars = 100 =435 mm?_
-Spac:ing. using 10 mm ¢ bars (A, = 78'5 mm?)
785 = 1000
s " 180 m:m: cfc
+ ™
g £
: 3
= -
5 £
s |F
s g .
H { ==
E fille— THEH £ 2
s ]‘ 2=
& ' -l = 8 o
= ciieia & o .__‘3 = g
-1 - e R anor ;- ] i-_g
—— oo o oaou ocoau = , -
S = x> =18 =
= e - ar = e
= = - = <8
= = = s F £Z
| = = = 4 S=
— L= = o A g
-] = = =[E#d-=
1 T £ = |EIES
E [_ A 4 Y S 7 Jd 3 S Sl e
T
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Design of base of floor slab:

Adopt thickness of the base slab = 150 mm

Minimum area of reinforcement = 0.3x150x1000/100 = 450 mm?
Area of reinforcement on each face = 450/2 = 225mm®

Spacing, using 8 mm diameter bars = 50x1000/225 = 222 mm
Hence provide 8 mm diameter bars at 200 mm c/c both ways both at top and bottom of the

slab.
Design procedure of a circular tank with rigid joint between floor and wall

pending upon the depth of liquid (/). the thi
De ’ )
assumed from the empirical formula % e thicknae: of:- the wall) in

I = (30 H + 50) mm
or t =150 mm which is more
The thickness of wall thus fixed is converted in metres. The diamewer ()

of the tank and the depth of waier being computed beforehand, the values ol EIJL
b .
and Fen are then calculated,

Referring 10 the Table 31.2, the enefficients for F and K can be obtined.

Knowing the co-efficients, the following formulae ¢ :
design the tank : g formulae can directly be used 1o

(1) Maximum circumferential or hoop tension

ar T=#{1_‘K}

(2) Maximum bending moment at the base = Fwh *
(3) Position of maximum circumferemial tension
or h=KH

Next step is 10 check the thickness provided for the wall from maximum
bending moment consideration and provide the necessary arca of vertical
reinforcements. Sufficient arca of sicel must be provided at the height A w0
resist maximum tension. Above this height, the arca of reinforcement can be
uniformly decreased and below this, the area of steel is maintained constant.

Example 3.5 Design a circular tank of 200000 litres capacity. The joint between slab and
side wall is to be rigid. Good foundation for the tank available at a depth of 0.6 metre
below the ground level. Assume suitable working stresses.

Sol. Capacity of the tank = 200000 litrcs.
. Volume of tank = 200 cu.m.
Let the depth of water 4 metres

Arca of the base = % = 50 sg.m.
The diameter () of basc

=*\}5————-ﬂx 4 —79Tm
IT

= say 8 m.
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The approximate thickness of wall for 4 metres depth of water as given by
the empirical formula : .

t =30H +50=30x%4 + 50 = 170 mm
which is greater than 150 mm, hence adopt

t =170mm=017m

4
H 4 .
- T o =85 .
From Table 31°2, we find
k=001
K =035
(1) Max. circumferential tension o
T = w.!2i.D (1-K)
s : .;_.10 x24 X 8 (1-05)
= 104 kN
(2) Max. bending moment at base
M =FwH?
=0011x10x43
= 7"04 kNm
(3) Position of maximum circumferential tension
h =KH. _
=0'35x4=14m
Using M 20 grade of concrete, we have
O = 1 N,-“l'l'il'l'l2
g, = 115 N/mm?
m =13

- = ('442
T13x T+ 115 -

je1-%

3 :
-1 B2 =083
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R = ;.d‘k.j.k
= yxTx 0853 x 0°442
=132
The required thickness of the wall from B.M. consideration

M
d= \Jn.b

_\f'rou 108
= =73 mm
1°32 x 1000

Hence the assumed thickness of 170 mm is in order.

Assuming a cover 35 mmuptomecemreofmmbarsonwatcrszdc the
effective thickness of the wall

=170-35=135mm

A,s_.-

jday
7°04 x 10°
" 0'853% 135 x 115
- = 532 mm?
Spacing of 12 mm ¢ bars (4, = 113 mm?)

113 x 1000 ,
= ——52—-‘-' = 212 say 200 mm c/c

Provide 12 mm ¢ bars @ 200 mm ¢fc in the form of vertical harsnnﬂﬁ
inner face of wall place at a clear cover'of 25 mm upio a height=h=14m
above the base slab. Above this height aliernate bars can be curuailed. -

. Design of section for hoop tension
Max. hoop tension (T) = 104 kN at 1’4 m above base

Area of hoop reinforcement
T 104 x 1000

g 115
=904 mm?

Let up provide hoop reinforcement at both the face.
- Area of hoop reinforcement on cach face

=452 l'I'iI'lIz

i
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Spacing, using 12 mm ¢ rings (4, = 113 mm?)
113 x 1000
452 = 250 mm c/c

Hence provide 12 mm ¢ rings at 250 mm c/c on both face of the wall. The
spacing will be kept constant upto 1°4 m above the top of the base slab and
beyond this height the spacing may be increased.

Check for tensile stress in composite section :
r &

% = 17X 1000 + (m-1) A,
104 x 1000

= 170 x 1000 + (13 — 1) 904
= 0°575 N/mm?2 < 1°2 N/mm?2, hence safe.

Distribwion reinforcement
Percentage of distribution reinforcement ‘
=03-01x 750 0

=228 . 170 x 1000

Arca of steel 100
=476 mm?
Area of steel on each face

= f_;_ﬁ = 238 mm?

Spacing, using 8 mm ¢ bars (A, = 50 mm?)

= iq%sg—uﬂ=zlﬂmmsay20[}mmcfc

Hence provide 8 mm of vertical distribution bars @ 200 mm c/c on
cxternal face only. On the inner [ace vertical reinforcement provided for
cantilever action will serve the function of distribution bars as well and no

additional reinforcement need be provided.

Curtailment of hoop reinforcement :

Al 2 m below top

Hoop tcnsion T =x whD
=-x10x2x8 =80 kN

_BO0x 10

A, = 115 = 696 mm?2

Arca of rings on cach luce

= ﬁ“—gﬁ = 348 mm?2
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Spacing of 12 mm ¢ bars
113 < 1000

= = 324 say 320 mmm c/c

= 348
A, 1 m below top
Hoop tension = 3 x 10 %< 8 = 40 kIN
40 > 103 )
Ac = 7115
Minimum area of reinforcement

= 348 mm?2

= 923 170 x 1000 = 510 mm?=

100
5
=
- il oS
> 3. S b=1 _
S S =
e 8 s 22
¢ o 22
- = S =T
' S 3
=2 3
= ST LAk
2 — A |
= . "
=) —~ 3
s [res wiws 0007 .l
g——g -—Ooa--—om‘---—- wws QOO Z —= p -
—= : T
= = 0071 —={PF K-
x| 2 |z :
@ =Y | S 2 4
3 = l £ 3 )
— - 2
2 = | & 2 Ik
+ L4 | |
£ |
T = .

Reinforcement details

. I&ﬁThk'Bole slab
Water prnofing course

75Thk Lean conc.
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UNIT IV
DESIGN OF SLABS AND FOUNDATION

4.1 INTRODUCTION
Common practice of design and construction is to support the slabs by beams and support
the beams by columns. This may be called as beam-slab construction. The beams reduce the
available net clear ceiling height. Hence in warehouses, offices and public halls sometimes
beams are avoided and slabs are directly supported by columns. This types of construction is
aesthetically appealing also. These slabs which are directly supported by columns are called

Flat Slabs. Fig. 4.1 shows a typical flatslab.

—

J é

r—— Critical saction for shaar

S

Fig. 4.1 A typical flat slab (without drop and columnhead)
The column head is sometimes widened so as to reduce the punching shear in the slab.
The widened portions are called column heads. The column heads may be provided with
any angle from the consideration of architecture but for the design, concrete in the portion at

45° on either side of vertical only is considered as effective for the design [Ref. Fig. 4.2].

Critical section forshear

N

[Foncrste in this arsa is
naglactad for calculation

Fig. 4 2 Slab without drop and cohwmn with cohnmn head

Moments in the slabs are more near the column. Hence the slab is thickened near the
columns by providing the drops as shown in Fig. 4.3. Sometimes the drops are called as
capital of the column. Thus we have the following types of flat slabs:

(i) Slab without drop and without column head(Fig4.1)

(ii) Slab without drop and column with column head(Fig4.2)
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(iii) Slabs with drop and column without column head(Fig.4.3)
(iv) Slabs with drop and column with column head(Fig.4.3)

A Critical saction forshear

— D |e— —a| L

- ) -
Critical saction ~
for shaar

Fig. 4.3 Elab wath drop and cohmmm without cohnmnhead

- El-l—

5—\_

Critical s ectior—
farshear

4545

Fig. 4.4 Slab with drop and with cohnnnhead

The portion of flat slab that is bound on each of its four sides by centre lines of adjacent
columns is called panel. The panel shown in Fig4.5 has size L1 x L2. A panel may be divided
into column strips and middle strips. Column strip means a design strip have a width of
0.25L1 x 0.25L2, whichever is less. The remaining middle portion which is bound by the
column strips is called middle strip. Fig 4.5 shows the division of flat slab panel into column

and middle strips in the direction y.

L2‘;.| L2 Er -

C of panelB

Cofpanel &

¥

- [ - - X
Column stip Middlestrip Cohsmn}strip Migdlsistie |- m strip

8 * Lo, 1lsy
_-|: ER L
bussTn buts—
4

Fig. 4.5 panels, column strip and middle strip in y-direction
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4.2 PROPORTIONING OF FLATSLABS

IS 456-2000 [Clause 31.2] gives the following guidelines for proportioning.

4.2.1 Drops

The drops when provided shall be rectangular in plan, and have a length in each direction not
less than one third of the panel in that direction. For exterior panels, the width of drops at
right angles to the non- continuous edge and measured from the centre-line of the columns

shall be equal to one half of the width of drop for interior panels.

4.2.2 ColumnHeads

Where column heads are provided, that portion of the column head which lies within the
largest right circular cone or pyramid entirely within the outlines of the column and the
column head, shall be considered for design purpose as shown in Figs. 4.2 and 4.4.

4.2.3 Thickness of FlatSlab

From the consideration of deflection control IS 456-2000 specifies minimum thickness in
terms of span to effective depth ratio. For this purpose larger span is to be considered. If
drop as specified in
4.2.1 is provided, then the maximum value of ratio of larger span to thickness shall be

=40, if mild steel is used

= 32, if Fe 415 or Fe 500 steel is used

If drops are not provided or size of drops do not satisfy the specification 4.2.1, then the

ratio shall not exceed 0.9 times the value specified above i.e.,

=40 x 0.9 = 36, if mild steel is used.

=32 x0.9=28.8, if HYSD bars are used

It is also specified that in no case, the thickness of flat slab shall be less than 125 mm.

43 DETERMINATIONOFBENDINGMOMENTANDSHEARFORCE

For this IS 456-2000 permits use of any one of the following two methods:
(@) The Direct DesignMethod

(b) The Equivalent FrameMethod
44  THE DIRECT DESIGNMETHOD
This method has the limitation that it can be used only if the following conditions are
fulfilled:
(@) There shall be minimum of three continuous spans in each directions

(b) The panels shall be rectangular and the ratio of the longer span to shorter span within a
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panel shall not be greater than 2.

(c) The successive span length in each direction shall not differ by more than one-third of
longer span.

(d) The design live load shall not exceed three times the design dead load.

(e) The end span must be shorter but not greater than the interior span.

(f) It shall be permissible to offset columns a maximum of 10% of the span in the
direction of the offset not withstanding the provision in (b).

Total Design Moment

The absolute sum of the positive and negative moment in each direction is given by
Mo = WLn/8
Where,

Mo = Total moment
W = Design load on the area L2 x Lp
Ln = Clear span extending from face to face of columns,
capitals, brackets or walls but not less than 0.65L 1
L1 = Length of span in the direction of MQ; and L2 = Length of span transverse
tolLy

In taking the values of Lp, L1 and L2, the following clauses are to be carefully noted:

(@) Circular supports shall be treated as square supports having the same area i.e., squares of
size 0.886D.

(b) When the transverse span of the panel on either side of the centre-line of support
varies, L2 shall be taken as the average of the transverse spans in Fig 4.5 it is given
by (L2a + LZb)/Z

(c) When the span adjacent and parallel to an edge is being considered, the distance

from the edge to the centre-line of the panel shall be substituted for L2.

Distribution of Bending Moment in to —ve and +ve Moments

The total design moment Mg in a panel is to be distributed into —ve moment and +ve moment

as specified below:
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In an interior span
Negative Design Moment 0.65 M,
Positive Design Moment 0.35 M,
In an end span

Interior negative design moment

1o
=075 ’ -!M
| +— |
! a. |
Positive design moment
i 028 |
= 063- M,
1 |
1+—|
I . |
Exterior negative design moment
[ 065
= ] Mu
1+ —
ﬂl

where o is the ratio of flexural stiffness at the exterior columns to the flexural stiffness of the slab at
a joint taken in the direction moments are being determined and is given by

Where

Kc = Sum of the flexural stiffness of the columns

meeting at the joint; and Kg = Flexural stiffness of

the slab, expressed as moment per unit rotation.
Distribution of Bending Moments across the Panel Width
The +ve and —ve moments found are to be distributed across the column strip in a panel as
shown in Table 1.1. The moment in the middle strip shall be the difference between panel

and the column strip moments.

Tablel.1 Distribution of Moments across the Panel Width in a Column Strip

S. No. Distributed Moment Per cent of Total
Moment
a Negative BM at the exterior support 100
b Negative BM at the interior support 75
c Positive bending moment 60

Moments in Columns
In this type of constructions column moments are to be modified as
suggested in IS 4562000 [Clause No. 31.4.5].
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Shear force:

The critical section for shear shall be at a distance d/2 from the periphery of the column
[capital drop panel. Hence if drops are provided there are two critical sections near columns.
These critical sections are shown in Figs. 4.1 to 4.4. The shape of the critical section in plan is
similar to the support immediately below the slab as shown in Fig. 4.6.

Critical — g
U » fection g b
[ow f | i et T
| = - | H 1 - @ s LS
e — P B L |
P i;. 2. il T,

; — Suppor LR
iuppuﬂfse:!iun-:ajm g 1 SEOCEE \"H A
calurn head ke e -
= L ey o

-
ot Critical -
E | section @)
Fig 4.6
Forcolurmms sactions with re-entrant angles, the critical saction shall be taken as indicated in Fig. 4.7
Critica] secfion Suppon e e e LT
W _ / section b2 Crities
F i e el @ SECHON
= T 5 i g
I ! N ot
I (i : 1 .
¥ —p il ! = F— ] Y
i :- L | 3 1 - b |
2 " - : L . l!'='.
- - - Q!fh
did !
() £

Fie4.T

In case of columns near the free ades of a slab, the critical saction shall be taken a5 shown in Fig 4.8,

-Fes
4 e Akl b
" Han o Fr=2
- cafmar
- Critical
< saction .
\
i
i :
4 i
f ; X
—| i Comer i
L coluen “Crinicd
section
{er LER
Fig.4.8

The nominal shear stress may be calculated as

\%
“Tpd,
where V — is shear force due todesign

bo — is the periphery of the critical section

d — is the effective depth
The permissible shear stress in concrete may be calculated as ksCc, where ks = 0.5 + p¢

but not greater than 1, where p¢ is the ratio of short side to long side of the column/capital;
and

2.=025 [fy
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If shear stress Ty <Cc¢ — no shear reinforcement are required. If C¢ <Cy < 1.5C¢, shear
reinforcement shall be provided. If shear stress exceeds 1.5 C¢ flat slab shall be

redesigned.

45 EQUIVALENT FRAMEMETHOD
IS 456-2000 recommends the analysis of flat slab and column structure as a rigid frame to
get design moment and shear forces with the following assumptions:

@ Beam portion of frame is taken as equivalent to the moment of inertia of flat slab
bounded laterally by centre line of the panel on each side of the centre-line of the
column. In frames adjacent and parallel to an edge beam portion shall be equal to flat
slab bounded by the edge and centre-line of the adjacent panel.

(® Moment of inertia of the members of the frame may be taken as that of the gross
section of the concrete alone.

© Variation of moment of inertia along the axis of the slab on account of provision of
drops shall be taken into account. In the case of recessed or coffered slab which is
made solid in the region of the columns, the stiffening effect may be ignored provided
the solid part of the solid does not extend more than 0.15 l¢ into the span measured
from the centre-line of the columns. The stiffening effect of flared columns head may
be ignored.

© Analysis of frame may be carried out with substitute frame method or any other
accepted method like moment distribution or matrix method.

Loading Pattern

When the live load does not exceed ¥th of dead load, the maximum

moments may be assumed to occur at all sections when full design live

load is on the entire slab.
If live load exceeds ¥th dead load analysis is to be carried out for the following pattern of
loading also:

(i) To get maximum moment near mid span
- Yth of live load on the panel and full live load on alternate panel

(ii) To get maximum moment in the slab near the support

3/4"™ of live load is on the adjacent panel only.
It is to be carefully noted that in no case design moment shall be taken to be less than those
occurring with full design live load on all panels.The moments determined in the beam of
frame (flat slab) may be reduced in such proportion that the numerical sum of positive and

average negative moments is not less than the value of total design
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4.6 SLABREINFORCEMENT
Spacing

The spacing of bars in a flat slab shall not exceed 2 times the slab thickness.
Area of Reinforcement when the drop panels are used, the thickness of drop panel for
determining area of reinforcement shall be the lesser of the following:
(@) Thickness of drop
(b) Thickness of slab plus one quarter the distance between edge of drop and edge of
capital. The minimum percentage of the reinforcement is same as that in solid slab is
0.12% if HYSD bars used
0.15% if mild steel is used
Minimum length of reinforcement
At least 50% of bottom bars should be from support to support. The rest may be bent up.
The minimum length of different reinforcement in flat slab should be as shown in Fig 4.9. If
adjacent spans are not equal, the extension of the negative reinforcement beyond each face
shall be based on the longer span. All slab reinforcement should be anchored property at
discontinuous edges.
Example 4.1: Design an interior panel of a flat slab of size 5 m x 5 m without providing
drop and column head. Size of columns is 500 x 500 mm and live load on the panel is 4
kN/m?. Take floor finishing load as 1 kN/m?. Use M20 concrete and Fe 415 steel.

Solution:

Thickness

Since drop is not provided and HYSD bars are used span to thickness ratio shall not exceed
1/(0.9x32) = 1/28.8

Minimum thickness required = span/28.8 = 5000/28.8 = 173.6 mm

Let d=175mm and D =200mm

Loads
Self-weightofslab = 0.20 x 25 = 5 kN/m?

Finishingload = 1kN/m?

Liveload = 4kN/m?
Totalworkingload = 10kN/m?
Factoredload = 1.5 x 10 = 15kN/m?
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Fig.4.9 Minimum bend joint locations and extensions for reinforcement in flat slabs
Lh=5-05=45m
Total design load inapanel W=15L2 Lnh =15 %5 x 4,5 =337.5kN

Moments
Panel Moment Mo = WLnN/8 = 337.5x4.5/8 = 189.84 kNm
Panel-vemoment = 0.65 x 189.84 = 123.40kNm
Panel+vemoment =0.35x 189.84 = 0.35 x 189.84 = 66.44kNm

Distribution of moment into column strips and middle strip.

Column Strip in kNm Middle Strip in kKNm

—ve moment 0.75 x 123.40 = 92.55 30.85

+ve moment 0.60 x 66.44 = 39.86 26.58

Checking the thickness selected:
Since Fe 415 steel is used,

My lim= 0.138 fckb d*
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Width ofcolumnstrip = 0.5 x 5000 = 2500mm
My Jim= 0.138 x 20 x 2500 x 175% = 211.3125 x 10°Nmm

=211.3125 KNm
Hence singly reinforced section can be designed i.e., thickness provided is satisfactory
from the consideration of bending moment.
Check for Shear

The critical section for shear 15 ai a distance % from the column face. Hence penphery of enitical

section around a column i1s square of a size = 300 + = 5300 + 175 = 673 mm

Shear to be resisted by the critical section |
V=15x5x5-15x 0675 x 0.675 [ oL AN f
= 368.166 kN 500
368166 x 1000

= = (.779 N/mm-
WS A% 615%175 s

k, =1+ B, subject to maximum of 1.

[ ]
]
[ ]
i
i
1
500 ! 675
i
1
1
i
[ ]

= 1:-:1
ﬂl’. }_: 5
k=1

1.= 025/f; =0.25v20 = 1.118 N/mm’

safe in shear since T, < 1,

Reinforcement

For -ve moment in column strip:
M, =92.55 kNm

AT
9255 % 10" =087F, A, a]l ——L =L
fandi- 7|

A

— 0875415 x A, x 175| 1 - —u__ 415
3500 %175 20

fé, 1464.78 = _-1,.[1 s ]
1" 3104
L A1- 21084.3A, + 1464.78 x 21084.3 = 0

A= 158374 mm’
This is to be provided in a column strip of width 2500 mm. Hence using 12 mm bars, spacing
required is given by
_ M= 122

2 = 178 mm
158374 < W0

Provide 12 mm bars at 175 mm c/c.
For +ve moment in column strip:
M, =39.86 kMNm
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6 & - A 415
3986 = 10 —1J.:<T-‘~=<~I]:~:-<;".,rxla5 B I
) 2500 = 175 20

630.86 = A [l— Ay ]
d 210843

oF A7 210843 A, + 630.86 % 21084.3 =0
A,,= 651 mm’

Using 10 mm bars, spacing required is

= _“’M X0 » 2500 = 301.6 mm < 2 x thickness of slab

651

Hence provide 10 mm bars at 300 mm c/c.
Provide 10 mm diameter bars at 300 mm c/c in the middle strip to take up —ve and +ve

moments.
Since span is same in both directions, provide similar reinforcement in other direction also.

..
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Fig 4.10 Reinforcement details (all dimensions in mm units)

Example 4.2: Design an interior panel of a flat slab with panel size 6 x 6 m supported
by columns of size 500 x 500 mm. Provide suitable drop. Take live load as 4 kN/m?. Use

M20 concrete and Fe 415 steel.
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Solution :
Thickness : Since Fe 415 steel is used and drop 15 provided, maxinmm span to thickness ratio
permitted is 32

o Thickness of flat slab = 622”

Provide 190 mm thickness. Let the cover be 30 mm

Overall thickness D =220 mm
Let the drop be 50 mm Hence at column head. 4 = 240 mm and D = 270 mm

= 1875 mm

Size of Drop

It should not be less than %x fm=2m
Let us provide 3 m x 3 m drop so that the width of drop is equal to that of column head.
Width of column strip = width of middle strip = 3000 mm_

Loads
For the purpose of design let us take self-weight as that due to thickness at column strip

. Self-weight =027 x1x 1x25=6.75 kKN/m®

Finishing load =1.00 KN/m’
Liveload =400 KN/m’

Total load =11.75 KN/m’

. Design (factored) load =15 x 11.75 = 17.625 kN/m’
Clear span L,=6-05=55m

= Design load Wy=W, xL,xL,

=17625x6x55
=581.625 kKN
Design Total Moment
Total moment
WL, " 581625x 55

Total negative moment = 0.65 x 400 = 260 KNm
Total positive moment =135 = 400 = 140 kKNm
The above moments are to be distributed into column sirip and middle strip
Column Strip Middle Strip
—ve moment 0.73x260= 195 kKNm 0.25x260=65 ENm
+ve moment 0.6:140= 24 KNm 0.4x140=356 KNm
Width of column strip = width of middle strip = 3000 mm
M, oy = 0.138 £ b & = 0.138 x 20 x 3000 x 240" = 476.928 x 10° Nmm
= 476928 kKNm

Thus M, i = M,,. Hence thickness selected is sufficient.

Check for Shear
The critical section is at a distance
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g = @ = 120 mm from the face of column

- It 1s a square of size =300 + 240 = 740 mm
V = Total load — load on 0.740 % 0.740 area
=17625 x 6 x 6 —17.625 x 0.740 % 0.740

= 624.849 kN
2
. Nominal shear sy BRSSO o anp N
4 x 740 x 240
___________ L. [N
Shear strength =k 1. ! —!
where k. =1+ [, subject to maximum of 1 ! 500 !
| |
L i i
where f_= A =9 ] |
| 5 ! 500 {74p
k=1 | |
| l
t,= 025420 = 1.118 N/mm | |
Design shear stress permitted b o e |
= 1.118 N/mm’ > 1, 120] 500 120

Hence the slab 1s safe 1n shear without shear reinforcement also.

y : d . . ; —
Shear strength may be checked at distance 5 from drop. It 15 quite safe since drop size 1s large.

Reinforcement
(a) For —ve moment mn column stop
M, =195 kNm
Thickness d =240 mm

A
M, =087 f, A, a’[l —e f—ﬂ

hed fip
195 x 105 =087 x 415 x A_ x 240 |1— Ag P,
x T 3000x240° 20
A
2250.38 =Aﬂ_,[1 —75"
346988

-

A_2— 346988 A_ + 225038 x 346988 =0

Using 12 mm bars, spacing required is

S T4 12?
2419

Provide 12 mm bars at 140 mm c/c

» 3000 = 140.26 mm

() For +ve moment in column strip
M, =84 kNm = 84 x 10° Nmm_ Thickness 4 = 100 mm

A 415 |

84 % 10°=087 x 415 x A_x 190 |1 *x— |
! 3000 %240 20 |
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1l‘i.":r |
274600 |

A_=1285 mm’

12245 =A_ |1-

Using 10 mm bars
oo T4 10°
1285
Provide 10 mm bars af 180 mm c/c

{t) For —ve moment in muddle strip:
M, =65 kNm; Thickness = 190 mm

% 3000 = 183 mm

Ay,  M5]
3000190 20 |

65% 10°=087 x 415 x A_ x 190 [1-

4
27460.9 |

AZ-27469.0 A_+ 047.5 x 27469.9 =0
A_=983 mm" in 3000 mm width

8475 = Aﬂ.{l -

Using 10 mm bars
/4% 107
5 -~ il IRl Rul
983
Provide 10 mm bars at 230 mm c/c

(d) For +ve moment in middle strip
M, =36 kKNm; Thickness = 190 mm

»x 3000 = 2397 mm

Provide 10 mm bars at 230 mm c/c in this portion also.
Since span is same in both direction, provide similar reinforcement in both directions. The

details of reinforcement are shown below

Colwmn strip . Colurmsn sthp
=Dorp width Middle stnip =Chwrs wikdth
\ 1121140 cic
= = T o e T
- E S T e ]
ERPLHS =K B Rl P ey e — -} — sooo
'% g P B TE T TAO—TBROCiC
3 s czsdfies= : )
B | e 0P | iligt2 200ce 1
o p= | = feniie Pt e N e i L=E ]
= 5 :
= : ¥
- )
P E 111 j0-180c/c i 1'-
i ks e ! SO00D
| i — e S e et R SR S R B SR L =1
2 8 i v F |
[ " ] ]
s O O g0 N
* 1@ 140 10 @ 180 clc
] e T T = / e {"i
i~ - B e
190 T , T,
T':'z-i-'l} — D Er 2230
roy Cower - 30
| S0 | | s00 |
Secticn  throwgh colemn strip
10 @ 230 cic pooase b L
b ———————— ey i R e L4
1
J ", | 190
| — 240
1500{ | S0
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Example 4.3: design the interior panel of the flat slab in example 4.2, providing a
suitable column head, if columns are of 500mm diameter
Solution:
Let the diameter of column head be
=025L=023=x6=15m
It's equivalent square has side “a’ where

i x15% =4’

4
a=133m

L,=6-133=467m

W,;=17.625 % 6 x 4.67 = 493 85 kN

WL, A49385x467
8 3

Total —ve moment = 0.65 = 288.3 = 187 4 klNm

Total +ve moment = 0.35 x 288.3 = 100.9 kiNm
The distribution of above moment into column strip and middle strips are as given below:

M= = 2883 kKNm

Column Strip Middle Strip
—ve moment 075 187 4= 14055 kNm 0.253x1874=4685KNm
+ve moment 0.60x 1009 = 60.54kNm 0.4 100.9= 4036 kNm

Width of column strip = width of middle strip = 3000 mm
Mg = 0.138 £ Bd® = 0138 x 20 » 3000 » 240°

=476.928 x 10° Nmm > M,
Hence thickness selected is sufficient.

Check for Shear

The critical section is at a distance

a 240
5 B e 120 mm from the face of column head
Diameter of critical section = 1500 + 240 =1740 mm ST TR
—1740 m
Perimeter of critical section = D ,” \
=170 x I o -15&3—-7121}:—-
Shear on this section I'\\ \ / f.’l
V= 1?_52%& 5-% x174% [ =50259kN 7
25 »
o o SIZSIXI000 _ oo 0

70 1740 = 240
Maximum shear permitted = k, x 025420

=1.118 N/mm* Since k. works out to be 1
Since maximum shear permitted in concrete is more than nominal shear 1. there is no need to

provide shear reinforcement
Design of Reinforcement
(a) For—ve moment in column strip
M,= 14055 kNm: 4 =240 mm
Ay 415
ot i

14055 x 10° =087 x 415 x A_x 240{1 - — = ___
2 3000 240 20

1622 = A,[‘l = LJ
346988
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Al 346988 A, + 1622 x 346088 =0
A= 1705 mm’

Using 12 mm bars,
2
= mfd =12

1705
Provide 12 mm bars at 190 mm c'c.

«= 3000 = 199 mm

(k) For the +ve moment in column strip
M, = 60.54 KNm: d =190 mm

=

60.54 x 105 = 0.87 x 415 x A, x 100 | 1-——2___, 41
3000 %190 20

382.51=A,[[1— Ag |

" 272503 |

ﬁ_,.f —274699 A, + 88251 x 27469 9=0
A.=913 om’
Using 10 mm bars

_ w4 =10
013

Provide 10 mm bars at 250 mm cfc.

» 3000 = 238 mm

{c) For—ve moment in middle strip:
M, = 46.85 kKNm: d =190 mm

A 415
4685 % 105= 087 x 415 X A, x 190/ - ——2__x——
3000190 20
.Iq.q
683 =A,1-——32
A"[ 2?459_9]

A2 _27460.9A_ + 683 x 274699 =0
A= 701 mm’
Using 10 mm bars,

o= T4x107
T01
Provide 10 mm bars at 300 mm c'c.
(d) Provide 10 mm bars at 300 mm c/c for +ve moment in middle strip also.
As span 15 same in both directions, provide sumilar reinforcement in both directions. Reinforcement
detail may be shown as was done in previons problem

#3000 =336 mm
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Raft foundation
Raft foundations (sometimes known as Mat Foundations) are a large concrete slab which can

support a number of columns and walls. The slab is spread out under the entire building or at
least a large part of it which lowers the contact pressure compared to the traditionally used
strip or trench footings. Because of the speed and volume of houses required after the second
world war, the raft foundation was widely used. The raft foundation was cheaper, easier to
install and most importantly, did not require as much excavation as the usual strip
foundations.

A raft foundation spreads the weight of the building over the whole ground floor area of that
building. The raft is laid on a hardcore or scalping bed and usually thickened at the edges,
especially in very poor ground. Rafts are most suitable when the ground is of good load
bearing capacity and little work is required to get a solid foundation.

Rafts are most often used these days when the strata is unstable or (because of this) a normal
strip foundation would cover more than 50% of the ground area beneath the building. There
are also situations (usually in areas where mining has occurred) where there may be areas of
movement in the strata. They are much more commonly used in the construction of
commercial building in the UK that they are for domestic homes, but can be used very
successful in both situations. To understand when it is better to use raft foundations, you need

to understand how they work.

Slab-beam type raft foundation

Raft Foundations are built is this following steps:

e The soil removed down to correct depth
e The foundation bed is then compacted by ramming
e Lay reinforcement on spacers over the foundation bed

e Pour the concrete over the reinforcement
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e The foundation may stiffened by ribs or beams built in during construction which will
add extra strength and rigidity.
A raft foundation is usually preferred under a number of circumstances:

e it is used for large loads, which is why they are so common in commercial building
which tend to be much larger, and therefore heavier, than domestic homes

e The soil has a low bearing capacity so the weight of the building needs to be spread
out over a large area to create a stable foundation

e The ratio of individual footings to total floor space is high. Typically if the footings
would cover over half of the construction area then raft foundation would be used

e If the walls of the building are so close that it would cause the individual footings to

overlap, then raft foundations should be used

2 ",'l) ﬂ =9
R IR IR VA
? G e A RN
7 AL --: '4 =
RN Y ; ; (T - :\,
i SRR e sEh BRAES EARE

Advantages and disadvantages:

Raft foundations tend to be cheaper and quicker to use than traditional footings. There are a
number of reasons why this is the case:

e The foundation and floor slab is combined, which saves time and materials

e Less excavation is required
Other reasons that make raft foundations preferable to footings are due to their engineering
benefits. They are ideal for poor ground condition where normal footings would not cope
well as they cannot spread the load as effectively. Related to this is that raft foundations can
reduce differential settlement, where settlement occurs at different rates across the ground
surface of the building, which reduces cracking and other more serious problems.
The main disadvantage is that they can prone to edge erosion if they are not treated properly.
They are not effective is the load of the building is going to be focused on a single point,

although this is rare in domestic construction, so this isn’t generally of concern.
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Pile foundation

Foundations provide support to the structure, transfers the loads from the structure to the soil.

But the layer at which the foundation transfers the load shall have an adequate bearing

capacity and suitable settlement characteristics. There are several types of foundation

depending on various considerations such as-

Total load from the superstructure.
Soil conditions.

Water level.

Noise and vibrations sensitivity.
Available resources.

Time-frame of the project.

Cost.

Pile foundation, a kind of deep foundation, is actually a slender column or long cylinder

made of materials such as concrete or steel which are used to support the structure and

transfer the load at desired depth either by end bearing or skin friction.

Following are the situations when using a pile foundation system can be

When the groundwater table is high.

Heavy and un-uniform loads from superstructure are imposed.

Other types of foundations are costlier or not feasible.

When the soil at shallow depth is compressible.

When there is the possibility of scouring, due to its location near the river bed or
seashore, etc.

When there is a canal or deep drainage systems near the structure

112 [Page




Pile foundations can be classified based on function, materials and installation process, etc.
Followings are the types of pile foundation used in construction:
Based on Function or Use

e Sheet Piles

e Load Bearing Piles

e End bearing Piles

e Friction Piles

e Soil Compactor Piles
Based on Materials and Construction Method

e Timber Piles

e Concrete Piles

o Steel Piles

e Composite Piles

Load carrying capacity of piles

The ultimate load carrying capaes
. : Pacity of 3 pije
pe carried by a pile, and gt wi: Plle 13 defined 3 i
c?ﬂmgd. The allowable load is ﬂl:;hmh '.‘hre: Pile continyes 1o :isnkﬂliimzx:;m;mhioaq iy
"n e basis of : (i) ultimate hear‘nad which the pile can carry safely llza.m:l r:s ict;.-f;?:nsz
] divided by suitable t:au:zur of safety (i)

‘ N resistan
icgible settlement an g
rmissib d (iif) overall Stability of the pile foundation. The | d i
: : oad carrying
OWIng methods: (1) dynamic formulae (2)

capacity Of @ ile can be determined by g
satic formulae (3) pile load tess (4) ypeﬂm:(::ln tesis
Dynamic Formulae, . s
is equaIF:]: the weight of hmm: e hammer hits the pile, the total driving energy
in the case of double acting hamme::] E:ur?:: k4 Grop of itk In sdditicn 1o this,
X 5 » energy is also imparted by the st
df.II‘J'I'lE nt:e rthiurnll:[r:;; T:hls [0[31 d[}wnwal'd Enﬂrg}f is Cﬂﬂﬁﬁﬂ]ﬂd hi [hE SWE.?]-I;' E;ensesuz_z
PEOREALIg, MR L by certain losses. Tne various dynamic formulae are essentially
based on this assumption, Fnllnwing are s .

G B . ome commonly used dynamic formulae :

AM. Wellington (1888), in the following form
_ WH
e = F(S+C)
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where ¢ =allowable Ilnoad W = weight of hammer
H = height of fall ; F = factor of safety =6
_F § = final set (penetration) per blow, usually taken as average penetration, cm  per
blow for the last 5 blows of drop hammer, or 20 blows of steam hammer,
€ = empirical consrant.

Denoting Woin kg, A in cm and § in cm and C = 2.5 cm for drop hammer and
C=0.25 ¢m for single and double acting hammers the above formula reduces to the following
forms:

WH
6(S+2.5)

vy " WH
(i) Single acting steam hammers : O, T6(S+0.25)

{t) Drop hammers Q. =

(W+ap) H
ttry Double acting stcam hammers . e = 605 +0.25)

where g = effective arca of piston (cm®) and p = mean effective steam pressure - (kg/em”).
{(b) Hiley’s formula. Indian Standard 1S : 2911 (Part I} 1964 gives the following

formula based on original expression by Hiley
_ T WH
Qr = S+ C/2

¥here (0, = ultimate load on pile
W = weight of hammer, in kg

Il

Group action in pile

when several closely spaced piles are grouped, together, it is reasomable to expect

the soil pressure, developed in the soil ag resistance, will overlap. The bearing capacity
of a pile group may OF may not be equal to the sum of the bearing capacity of individual
piles constituting 2 group. lThﬂﬂr}f' and test have shown that the bearing value @, of a
group of friction piles, particularly in clay, is equal to bearing capacity of individual pile
mutiplied by the number of piles n in a group. However, no reduction due to grouping
occurs in end bearing piles. For combined end bearing and friction piles, only the load
carrying capacity of the friction portion is reduced. A method of estimating the bearing capacity
of a group of friction piles is to multiply the quantity nQ, by a reduction factor called
the efficiency of the pile group m,

@ =n0r.m,.

The efficiency of pile group depends upon the following factors : characteristics of

pile(i.e. length, diameter, material, etc.), spacing of piles, total number of piles (n) in

a row, and number of rows (m). Out of a number of formulae for determining efficiency
of a pile group, two are given below :

8 {{n— 1) m+ (m— l)ﬂ]
) . : L 2
Converse-Labarre forfnulﬂ P Mg=l-45 mn

~ Where B =tan™’ -"; (degrees)

d =diameter of piles and s=spacing of piles.

m+n-2
2. Silver Keemey formula : m,= |:l gl [s‘ - -; 093 Hm +n-1 ]] &3 mﬂfn

§ =average spacing, centre to cenire in metres.

Where
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Structural design of RC pile

A RC. pile is designed for the following : (l? total ‘loa‘d C(:Ir;:ngil conasltafr:;{x m;t:le
Structyre (2) handling stresses (3) driving SLresses. While desilglmngThe l;:m el L pilé
" may be conidered as fixed at one end hinged at the o er.Fnle L Sg.secﬁon of =
"4 be taken as 2/3 rd the length embedded in firm stramum.

Yaries with its overall length.

Stresses During Handling. Precast piles shou.ld be'checked againft handling e
When a pile is lifed by means of a derrick, it is subjected to ber.mng Momen g, ,
its own weight. When the pile is of less than 12 metre length, it is hr.'
one point at its middle. Piles longer than 12 metres are suspended at two of three P
suitably spaced at its length so that handling moment is as small as possible

()) Pile suspended at one point. [Fig. 17.1(a)]

’ If wis the weight of the pile per unit length, and L is the length of the e

N : ; . _WL L wp? A
it will be subjected to a maximum bending moment -szzT at the powy 4
suspension.

(2) Pile suspended at two points. [Fig. 17.1(b)). *
12 2
Let the distance of each point of suspension be x A —

e
from the respective ends. The value of x should be m””“””““‘m
such that maximum bending moment anywhere in the pile (a)o‘:\omlqu

should be the least. This is possible when the hogging moment
h—xt L-2x —-hr"“
L

is equal to maximum sagging moment.

188!

A
Reaction R=WTL at each point of suspension, E””{‘Nuuuu"'

. . L H
Maximum hogging moment at the end of each cantilever (b) Two pomt kng
e
ok - 0 % b i—w'
. . ’ "
Maximum sagging moment a1 the middle of the pile ¥ L2 —
_wlL(L w L} i g
"2 |27 g ..(if) 69 Thvee pod
BT the two, we get
Eﬂuﬂt‘“g wx? _wL E_I_sz__t_v_EE
3 - 2 |2 8 72 |\3™*
g _ i i =
SeLx-= =0, which gives x=0.206 L.
_w o _':""_L_l
¢ maximum B.M. =7-(0.206 Ly = —=

Hen¢
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Design of pile cap

[l arasm=—-

Whea a column of pier is supported on the pile only, the column should rest centraity
o the pile. However, when the column is supported on more than one pile, the piles
giould be connected through a rigid pile cap, © distribute the load to the individual piles.
The pile cap consists of a rigid, deep, reinforced concrete slab which acts monolithically
yith the group of piles. The piles should be arranged symmetrically about the axis of
de column so that the load from column is distributed uniformly fo all the columns.
The pile cap slab is provided in uniform thickness. The pile cap should be extended beyond
exterior piles by {0 to 15 cm. The pile should be embedded by at least 15 c¢m in the
pile cap, and the reinforcement 1in the cap should be placed at least 10 cm above the
pile head. Thus, effective depth of the pile cap will be equal to the total depth minus
13 em, The pile cap, provided over the entire area of the piles, 18 considered tc: be
divided into a framework of rectangular beams, along which main reinforcement s pr!:mded.
The arrangement of these beams depends upon the number of piles, and the width of
beam is taken equal to width of pile. ‘ ‘

~ Pile cap for three piles. Fig. 17.3 @ chows the pile cap for three piles. The
Ple cap is considered to be composed of two beams AB and CD | A'. B and C being
U three piles placed at distance [ centre to CENUe: The column W is placed on the

e DC, at the centroid of the triangle ABC.

Lat W = total load of column.

Load on each pile= w/3 ;

L remneof W from D =30=375

i C llﬂ L
. on e . "
g D ‘1.5 sUPP:’ h that reaction RS _;DI _____ " H\ lhi
D god 18100060 % pggimunm bending [-ltia*:-*"':f"'.:i"":i:w S,
tcwwn K S | I
moment g ke
—— ‘ '
=3 3 - N ol ﬂlh’n*']
W 2[’;13']=’3‘%% | . 4
o o R } »y
=3 3 2 s | L", i ! Lﬂ
Reaction transferred © J::F" \l W i
w W i y |
p=W-7°73 ey
- ™ ‘\\J
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of Iength L, and

AB is : -
: |<,g.chhde ::c?:: middle point D b:;l;n; F‘_"' _________ '8
‘I:ad (2W/3 . Hence maximurmi -.ull s
moment i given by . ,:
w [é'-\ = —WL ) : .
M:=7313)" 6 . o
The reinforcement for both beams | fri —  fppw : E i E
can now be computed. . E '. :{ :
Pile cap for four p‘i;es [Fig. 17.3(b)]). @ é : E E:D
Load on each pile=z ': -i::j- ............... 1
ile cap is considered to be | 1 ._
compo::: gf lwopbeams AB and CD. M L ) Ple cap torigy gy,

Example4.4 Design a pile under a column transmitting an axial load of 800 kN. The pile

is to be driven to a driven to a hard stratum available at a depth of 8 m. Use M 20
concrete and Fe 415 steel.

Solution:

For M 20 concrete, ﬂa.=5memz, For Fe 415 steel, 05 = 190 N_f'mmz.
Also, m=13.33 for M 20 concrete.

I. Main reinforcement.  Let the length of the pile above ground, including plk
cap, ec. = 0.6 m. .. Total length of pile = 8.6 m.

Let the size of the pile be 400 mm x 400 mm

- 8 6 . ' ¥/
b0 = 6.4. =21.5. Since this is greater than 12, the o
5 : | ; ¥ Pille behaves as long column.

¢ reduction coefficient C =125 % _ 8.6

Hent 8D I B-Foc0g

800/0.8 = 1000 kN

sl carrying capacity of column s given by p-g
ohere A = area of concrete = (400 x 400) — 4 - )
5 000X 10°=5(16 X 10"~ A,)+ 1904, Frop which 4, = 108] mm'
gince the length of pile is less thap 30 times ¢ o

p ‘ i he width, minimum
ross cross-sectional L
‘ 125% g area = 100 (400 X 4“» = Z(XX) mm:_

. pesign load for a short column =

A +o, A,
16 % 10* -A,

reinforcement

However, provide 4 bars of 25 mm ¢ oivi
2 gving total area of stee] = 4 -
de a pominal co =4 x490 = 1960 mm’.
provide 2 1 ver of 50 mm. Cover to the centres of main reinf 5
gmom o ties =50+8+25/2 =705 mm niorcement using
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Laleral reinforcement in the body
Lateral rcinforcement in the body of pil
Volume needed per mm length

of the pile
€ is provided @ 0.2% of gross volume.

=:—)6% (400 x 400 x 1) = 320 mm’.
Nominal cover =50 mm
Using 8 mm o ties, length of each side of tie
=400 -2 x 50 - 8 =292

Area A, = % (8)" = 50.3 mm".

- Volume of cach tie = 4 x 297 « 50.3 = 58750 mm*
Pitch = 587507320 = 183 mm
Maximum pitch permissible = %x400 = 180 mm.

Hence Provide 8 mm o ties @ 180 mm c/c throughout the length of the pile.

3. Lateral reinforcement near pile head. Near pile head, special spiral reinforcement

Ky 2 :
" provided for a length of 3 %400 = 1200 mm. Volume of spiral. @ 0.6% of gross
DN

3

* P mm length is =-lq£(400x400xl)=960mm5.

L‘q 8 mm o spiral, having A, =50.3 mm", pitch is given by

g k nference of spiral x Ae _®x292 x50.3 _
 Prow: 960 - 960 |
My the ‘the spiral at 45 mm pitch. Provide 6 additional bars of 16 mm  vertically

48 mm

4 Piral. These spirals will be in addition to the normal ties.
\,. reinforcement near pile end |
l M. of ties per mm length @ 0.6% of gross volume = 960 mm .

sg750 mm'. Hence, Pitch = 58750 /9 o, 7]
o [ 30400 b
in @ hotlom length o 1 200)

o qp G0
Provide ties @ Cre Provide 1wo panrs ol 12 mm a Wpacer ey Wit
nd links. P1 b
5, Spacer forks @ '

: ¢ along the length. L ;
i ::1 L;ulr:ﬂ'ifirr;\.'! resses. Provide three holes in-the pite 4, 1My,
6 Check for he '

hole at 0,293 =0.293 8.6 = 2.5m from the pile for the purp, "~
(1) One hole at 0.293L

Volume of cach tie
n ol

| - I [ .c il n W H 4

. 175m for the purpose of stacking,
(iiy Weight of pile per meter run =

e ) m, "

0.4 % 0.4 % 1 % 25000 = 4000 N/m
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~1.75m for the purpose of stacking. )
(jiiy Weight of pile per meter run = 0.4 %04 %1 = 25000 =4000 N/m

3 & - 400 -
Hzf{'_l{'ﬂ_:_l..ﬁ'l = 12500 N-m 1; 1
=125 % 107 N-mm W '%“}E:,np'::h £ 400 "
Effective depth of pile section 1=4D(]' - 70.5 E N L !
- 329.5 mm. Let the neutral axis be situated T . ;
al n below one face. 5 .E- | —EE‘IE mm ¢— |§’
b ' g - '
——+m = 1A (n=d)=mA(d-n) £l - _"-_'_‘1
4&] E | II 'I'.'l'
--2-ﬂ1+11.5 % 13.33 - 1) 980 (n - 70.5) E "_*';EE"“‘
= 13.33 x 980 (329.5 - n) i Hole for stacking
or ' + 158.39 n - 28083 = 0 =
From which n= 1062 mm E Aol 8 mm 6 ties
Tuking moment of forces about tensile @ © 180 mm ot
sleel, we per e
; L)
h:r%[d—’—;]+1l.5m—I].ﬂl;.‘r’fd-d;} Ti-ﬂmmﬂnl
M E @ 680 mm clc j— 400 mm—=
where ¢ - =) C_ 1062705 g e b |
n 1062 ¢ 4 {eere]| @ 1500 mm cle
=0.336 ¢ ¥ :
400 = 106.2 %{319_5 = .lﬂi;:_':] X 8 mm ¢ b8
i 3 0 60 e
8.995 x 980 x 0.336 ¢ (329.5 - 70 5) 6 mm ¢ ke
‘ @ 1500 mm ot
=125 x 10" Section at Y-Y

which gives ¢ = 59 N/mm*

Example 4.5A RC column 400 mm x 400 mm carrying a load of 600 kN as supported on
piles 400 mm x 400 mm in section. The centre to centre distance between the piles is .5

m. Design a suitable pile cap. Use M 20 concrete and Fe 415 steel.

| ull““('m".;”;" of pt’lo cap. Centre to centre spacing of piles =L=15 m
pimenio

900 mm clear projection of the cap beyond pile face. Overall length of
KKP‘“’”‘ “he direction AB = 1.5+04404=23m

‘_‘pd()“!- . l"L\B'-“‘lS-\[—}"I]m

Length of beam CD=i==3 S5 m L

Lengeh of cap in the direction DC =13+404+04=21 m
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), Devign of beam D
Load on each pile = W/3 = 600/3 =200 kN
Let the width of beam = width of column = 400 mm
we 600 < 1.5
B.M. duc t = = — =

¢ to load 3—_]3- Vil _ 173 kN-m =173 » 10" N-mm .01}
e 1o self weight of the beam plus weight
be 800 mm. The self-werght

r to calculate the bending moment du
f slab equal 10 two umes the

In orde
of part of slab, let us assume total thickness of slab o
calculated on the assumption that weight ©

of the beam i
widih of the beam acts with the beam.
3 % 400 x 800
'-1-'=_———i—{-]—ﬁ———' HIXIﬁDﬂ{]:Zd{ﬂ'JNIm

| =LV3/2=13 m.
=1.3 % 24000 = 31200 N

Length of beam
= 31200/2 = 15600 N

Total load

Reaction at €
Distance of point of application of column load =%I=%x .3=087 m

"
n, due to self-weight is = (15600 = 0.87) - :4_;'_:9

~ B.M. at the cenlre of colum
m = 4.489 x 10® N-mm.

- 4489 N
177.5 x 10° N-mm

_ 173 % 10° + 4.489 X 10" =

d:\/M:éWmm. Keep d =700 mm
0.914 »% 400

Total B.M.

(% =
. 175.5 = 10 _ 1206 mm’
" 230 X 0.904 X 700
No. of 25 mm @ bars=1200/490.8=2'5
i However, provide 4 bars of 25 mm &
ctual area of steel provided=4x490-3= 1963 mm'-
m"*m‘”"sm"';'“\..g; ’
i | T
31&-:«-015"‘"""” ' 400 ——t x|
span L =15 1™ x 2 ISP 6 i § Y ;
B\ due @ load from bcam E A T, W '11- patrid ¢
s Wi l{ip_'-_#l»._s S 10mm o ) E::f"-- 3 f ‘a'\‘
f ) - r‘m ' " 1 Column
150 KN-m = 150 ~ 107 N-mm -“w“d"y H ] /
R M duc to self weight : -
~3000 (1.57 X .
02 —6750 N-m

675 - 107 N-mm
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Total BM == i g
150 « 10" +6.75 # 10 Lokani £ Eg

= 156.75 « 10" N-mm

10 mm
4 nos as
SOCON(ta
reinforo,

The reinforcement in direction AB r l
will be placed helow the reinforcement & oo« c oo |E
ot €D Henee avatlable d =700+ 25 | L::': .......

- 73§ tm. l CoZC3z o
Ttia—25 [F--!
156.75 » 10° | el e
'4" = 2‘*“ o _()-9()4 X 725 At -10mm‘ I
: Pile i
= 1040 mim’. ile ties 4 nos Pile
‘ . (b) Sectional at X-X

However. provide the same rein-

forcement, 1.¢. 4 Nos. of 25 mm o bars. FIG. 17.6

Keep total depth = 800 mm.

4 Secondary  reinforcement
Areat o1 secondany reinforeement running round each pile head = 0.2 < 1206 = 24!®
Using 10 mm o bars, Ae =T78.5 mm’,
“ No. of bars = 242/78.5=3.08 = 4.
5. Check for shear

Shear s tested ar 3 distance
the load dircatly 1o the

| d from the beam. The dispersion linesiat 45 F‘T
umi. Hence there is po possibility of diagonal tension o

hl. \IL‘I "I‘ I I'. "Il" 5 w 5 “" I" l 'E I ; 6
L. EH'E . hf'.' {
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UNIT-V
DESIGN OF CHIMNEYS, BUNKER AND SILOS

DESIGN OF CHIMNEYS

In many industries chimneys are required to leave hot waste gases at greater heights.
The chimneys of 50 — 100 m are very commonly used. The outer diameter may be kept
constant throughout or may be linearly varied. The thickness of concrete shell may be varied
in steps linearly Fig 5.1 shows typical chimneys.

0 ! ' -
H I |
o L i
i |
| | 1 | | |
| I | I I !
| | | I I 1
| I I I ! |
I I 1I r I !
! i ; i I
I ! 1 ' I i
| | I | i 1
1 i I | I |
' [ -5 3 | | R.C. sheil
! | 1 i | 1
1 i i 1 1 |
| I I 1 i I
I I L 1!
s ] e T 7 I r
| I ! iy
i S R R L B i e
{a) Constan! outer diameter {b) Constanl cutside diameter (¢} Uniformly warying oulside (o) Cross section of
and unifarmly varying and varying lhickness diarneter and unifarmly chimnay wall
thickness in sleps waryireg thsckness

Fig 5.1 Typical chimneys

Design factors

Chimneys are to be designed to sustain the stresses due to
1. Self-weight
2. Wind load

3. Temperature variation

Using Is 875 one has to arrive the wind pressure exerted on a structure. The design wind load
depends upon the shape of the structure also. Table 5.1 gives the shape factor, with which one
has to multiply wind pressure in the area to get design wind pressure on the structure

Table 5.1 Shape factors for wind load calculation

Ratio of height to basé.width, 751 5 fi0Lk
Shape of Chimney '
Circular i vy SR :
Octagonal GO R R | SN 09 1.0
Square (Wind perpendicular to diagonal).” |"" ' 08 "% |~ 09 . Lo
Square (wind perpendicular to face) SOOI | B L5 13
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Inside temperature is higher compared to outer side. This causes differential expansion and hence
stresses are induced in R.C. wall in both vertical and horizontal directions. Design should take care of -
these stresses also,

Design of R.C. chimneys is carried out by selecting the section first and then checking for the
stresses developed. Thickness of shell wall is kept to a minimum of 200 mm at top and is increased to
300 — 400 mm at bottom depending upon the height of chimney. Vertical reinforcement of about 1%
and hoop steel of 0.2% per cent is usually sufficient. The section selected is checked for stresses due
to:

(a) Self weight and wind load

(#) Combined effect of self-weight, wind load and temperature variation.

Stresses in concrete and steel both in vertical and horizontal directions are io be checked. It is to be
noted that permissible stresses are increased to 1.33 times when wind load is considered.

12.3 STRESSES DUE TO SELF-WEIGHT AND WIND LOAD

The following two assumptions are made:
(i) Reinforcement is replaced by a steel ring of equal arca.
(if) The stress at middle of shell is taken as the average stress in the shell.

T

| =

Se

Fig 5.2The idealized section and stress variation

Let, W be aclf-weight and M be moment doe to wind load.

A,—-Area of reinforcement in vertical direction.
R— Radius upto centre of shell.
t,—Thickness of steel ring
o
2R
t,—Thickness of concrete shell
AB—Neutral axiy
a— Angle sublended by neutral axis at centre with x-x axis
m— Modular ratio
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o, —Compressive stress in concrete

o,— Tensile stress in steel .
To find total compressive force resisted by shell, consider the elsment R. d9 at an angle 0 to

x-axis. Let compressive stress in the element be o’. Then from stress diagram, we see that

i ReosB+Reos S cos 0+ cos ot -
"  R+Rcosa . l+coso

Area of concrete in the element = R d@ 1,
Equivalent area of steel in the element = (m — 1) r, R d0

-~ Total compressive force
-0

cosB + coso
c=2 [Rd® s.0, —————
a

l +cosot

cost + cosa

L
+2 =1)r, RdO o
‘!{m ), “ l4+coso

=i

| . "
L I{msﬂ +cosa)d @ + 2m—1pc. R J(mB+cou o) d 0
1+ cosc | +cosat

_ znﬂc 3 L. |

= Troosgh e t(m~Vu]lsin04+8cosal;
2R 0,
1+ cosct

[r,, +({m—1) r,][sin{m—u]+{r:—a) cosu'.]

2Ro, ¥ :
=m[.r: + (rre I}r,][smu+[1t—aj cos -:1]
To find total tensile force consider elemental strip R d ¢,
- (Rcosp~R {:ns-ﬂ.}
T= z_!&dq:r, m A

2Ro.m1, . a
=2 "¢ "3 [sind—¢cosa
1+coso [ ]“

= M[sina — msu]

1+coscx
The equilibrium of forces in vertical direction gives.
W=C-T
2Ro : 2RO, me
W=—"=_1It +(m-1 sinkt+(m—-o ol -=——"""% f[cingg-
TR u[‘ ( }fr][ ( )cos ] el [sinct - orcos
2Ra !
= ——F— =, )isino+ (m—o ;
'I+nma[['t l]{ (ﬂ- }Cﬂsﬂi+m,wmu] . |
Moment equilibrium condition gives,
F-—;II =
M= [CRcos0d®+ [TRcos dd
0 [
IR o, i R0 mr, |
= T fe*(m - l‘}r,] J{cosﬂ+cosa) cos8 46 +—!I—1—Eo-';—{—l-’—j.{ms¢-cosu:]m5¢d¢
o
L. §

_ 2R%0,

T 1+coso [ fe *(m~1) ‘;] j(coszﬁ—msﬂms ﬂ;}dﬂ
]

L

2RY o, mut 2
+—rx—"E | {cos* h—costcosOt)d
1+ coscx !f ¢ ¢ Jde
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2
MNoting' that cos® A = l+cos*A

Rl . .
M= 25 Fe . -|-i.ir:':—1]u*‘][:ﬁldl-smzﬁI

-
1+ coso E 4 +c05u-sinﬂ]ﬂ

+-—2R——-— ,{2 —-—'P-—cosms:n ¢T

l4+cosc

2R? (a9 200 -
= I+cosl:t£: +(m—1)r ][ sm4 + Cos o -sin (1t — cﬂi[

2R20, ‘ m—o 1 2R%*g ! a 1 [
= —t + Fo — ] . B —_—— ]
] . [I‘ {m—1), E + —sin ?u ._+ 1 i, sin 2cc

2
= _25___[( —r j{“ Jl:‘+-%sir1 2a}+m:,r:]

1l +cosc

. Eccentricity e is given by

i - mit
(1. ——r,)[sm42ﬂ+ 2 Zﬂ +-—-2—'r:

(¢ — 1) [sin ot + (m — @) cosa] + mu, wcosa

MM
=—=R
‘Tw

The value of alpha is to be determined by trial and error. Once this is known the stresses in
concrete may be found using above equation. Then

R(l - cosa) |- cosQ
Bt L
R(l+cosa) . ° I+coswe

g, = mo

Stress in horizontal reinforcement

Due to shear, stresses developed in the horizontal reinforcement. Let horizontal shear on the
section be H and is shown in the figure5.3

j 3

r—— .

e - ——1
Fig 5.3

.. Area of steel in 1 m height
2 Ay <1000
= - -

5
If o, is the stress produced in steel, shear force resisted

_ 2A, %1000

— X
> s

Shear force per metre height

_ _Hx1000
Lever Arm
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Assuming lever arm =D,

Shear per metre height = lOC[))O ¥
1
Equating equation (@) and (&) we get,
2 Ay <1000 1000 X
e &, 23
s D,
_ Hs
g V=2 A, D,

Temperature stresses

Brick lining reduces the temperature to considerate extent, but still exit some temperature
difference between inner and outer surfaces of concrete shell. Let this difference be T. The
drop in temperature takes linearly across the wall as shown in Fig.5.4

Outfaco —= .

|

(a) Vertical section

(T—Aﬂ;’/]r

u(b) Temperatswe gradient

_—

=
-
CTc
fa— kit —>§
fe—— &t ——
(c) Stress variation
Fig.5.4

Due to higher temperature, concrele 0n inner face has higher free cxpanmun while free exp?nsmn
on outer face is less. Since free expansion is prevented by concrete, compressive muu;o dml ;:pFl on
inner faces and tensile stresses on the outer faces, This variation of stress is linear as shown in FIg.

12.4, Let the compressive stress at inner face be o, and tensile stress in stecl be 0,

Let 1 --Thickness of concrete shell.

at,—Distance of reinforcement from inner face.
ki —Distance of peutral axis from inner face

Consider unit length of circumference. Equating tensile force to compressive forces, we gel
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I (a)
Eh‘ u¢=r'. ﬂ:,

If percentage reinforcement is ‘p' we know
L, =pl.
. From equations (a) and (b) we get

zlhr ﬂf = p’l'ﬁ.l

()]

3

= c (C)
or C, 2p |
From stress diagram, we get
.7
m

(a’c e Idc)

W

° x|a
=

O 2 (d)

e
o

From equations (c) and (d) we get
k3, G~k

2p "k
or K = 2apm - 2kpm
K + 2kpm - 2apm =0

== mpk Jm1p1 + 2mpa

Let o be coefficient of thermal expansion, which is almost same both for steel and concrete.
e - be the final strain experienced by the section.

ma,

. Free expansion of concrete per unit height of shell

=aT
Free expansion of steel per unit height of section

=o(l-a)T
<. Stress in steel o,=Ele-(l ~a) Ta] (e)
Stress in concrete o,= E.[To~e] 0

1 Inner Edge

At neutral axis, free expansion = é

X e=(1-KkaT
Substituting it in (¢) and (), we get

o,=E, [(l —k) T — (1 —a)Ta]

= E,oT(a - k)
o, = E [To — (1 — k) Tal
= EcTﬂ'-k

K can be found from above equation and then os and ot can be determined
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Combined effect of self-weight, wind load and temperature

Stresses at leeward side and windward side due to combined effects of self-weight, wind load
and temperature are to be calculated and checked. The relevant expressions are derived
below:

(a) Leeward side:
Fig 5.5 shows typical vertical section of shell. Across the section stresses due to self-weight
and wind load are assumed uniform, value being that at middle of concrete shell wall, as
shown in 5.3. Let this stress beocl. The temperature stress is compressive on inner side and

tensile on outer side. Hence combined stress varies linearly as shown fig5.5

bt —— IE'_'_-"'!

b———— atc-———-h-l
-h—-\_.___——-.______._______‘-h
——
— i
' ——i—
—
[ 4 ] ——
| i
——
—i—
—
—_—
——
——
—
——l—

LIJTTTTTT] oo

g at(:—-l

J-—‘ﬂ.:--ﬂ_.____r_..n-‘l ﬂ-“{n
L——

-ﬂ'ﬂ

Fig 5.5

Equilibrium of forces in vertical direction gives,

. 1
Lk Gy te+(m— 10,0, = —0.kt, —1, o,
If percentage of steel is p, then'r, = p L

: 1 =
- Gfl .fc+(m—- I]chﬁc;]:iﬂt k!,—-pl,mﬁ{. (akk}

ie., Ut.'[l + (m - I}PJ - ﬁc[ﬁﬂw a_k]
2 k
) _— oL +{m—1}P]
- c= —k———m a—k
2~ TP

= mo.(<7%)
= O, = mg_ _k__-

Change in stress on inside face

= 0. — Ty
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If ‘e’ is the final strain due to combined effect, additional compressive strain on inside face

=ocT-e

_G_C:_g-ﬁl- =0 T—e
c
0‘. —dt‘
E.
‘Change in stress in steel = mG_ + O,
-~. Additional tensilestrain =e—-a(1-a) T

or e=aT~—

e= —"—'g%tgf—+u(l—a)'r

x
Equating ‘g’ and () we get,
O —Ca _ MmO, +C,;
E E,

<

Substituting for o, from equation (12.10) and E, = mE_, we get

an'd +- ‘(a—;k)md

aT—

+o(l—a)T

<l

aTE.—a(l -a)E_. T= +0C_—0_,
m

a—k\ a—k
acE. T=oc_| i+ +C.—0C_,=0 +
€ C( k ) o « t(l k )

00.TE,

TR ind.

. ﬂel

oy [1+(m=1p] _ aoTE,
k _ a—k 1+_ﬂ.___£
2 v % k

o, [1+(m-1 TE
:Iz (m—1)p] _9eTE, _ . &
05&° —mpla— k) a €

From above equation, k can be determined. Using this value of k in above equations the final

stresses due to combined effect oc and os can be determined.

(b) Wind ward side:
As shell is in tension, due to self-weight and wind, there is no compressive stress in concrete.

There is only tensile stress osl in steel. os,6¢ are stresses due to combined effect.
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- |nnor face

B

,
—ot—»
o e kit
m J\W] -
141
(a—Kp,
Fig.5.6
Distance of reinforcement from inner edge is at. and distance of NA is kr.. Equilibrium condition of
forces in vertical direction gives,
1
Oty = O, - Ek’f G,
But g,=mg, E—i—k
and 1, =p 1. where p is percentage of steel,
' a-k |
Hence UﬂP’c“mﬂcTP‘c'E“eue
P Oy | MP k )
.= POy ot

n-k)_“i
”'PL k ) 2

Change in strain in concrete on inner face,

El.l_.‘.gi =0T —-e
El EI

or

(6, @
'l:ET— —tl —i
) (mﬂfﬂ,]

()
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Change in strain in steel.

g!_;_gﬂ--e-(l-a)aT

en 2% 4 (1= g)aT
mE,

From equation (a) and (b) we get

aT-S _% » &% 4 (1_g)aT

"'Ec Ec ’"Ec

o, o
aoTl = —=+—L
E

< ¢
or o.= aaTE, ..

But from stress diagram, we find, "
o,
m =
(a -k) te

x|o

Substituting it in (c), we get

a-k

o.= alTE, -0,

o.=aTE k

Value of k is determined using the following equation

P9, i :
=oTE
mp{a — k) — 0.5k TR

Then from above equations os and ¢ are determined.

Temperature stresses in Hoop reinforcement

()

(e

Fig.5.7 shows the plan of part of cylindrical concrete shell. If A¢ is the area of reinforcement

at spacing s, total area of steel per unit height = A¢ / s

Treating this area of steel as equal to a steel ring of thickness ¢,, we get

A
27R 1, = —%
5

Hence ¢z, can be found.
If percentage of steel is ‘p’ then

,=pt,.
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Fig.5.7

For equilibrium, compressive force in concrete is equal to tensile force in steel

l .r
EU‘ k't =0 t,=0, pt.

From stress diagram, we find

o, ,a —k’
=0~
m k

Substituting it i51_ (a) we get,

' Iu"k'r =m’-——a’;k'm

: 2 ' [ (3 ka €
or K*=2mpa —-2mpk
or K*+2mpk’ 2mpa =0
or | k’=-mp+\{;ﬂipz+2mﬂﬂp

From this X’ can be found.
Consider the strains in concrete and steel,

crailt in concrete:
oL

.——aaT-e
E.
0’
<
ot e=aT—g

<
Strain in steel is

T, —e—af(1—a)
E

o, ’
=2 +aT(l—a
=% (1 -a’)

From equations (<) and (d), we get

o,
T—— ==+0T(I—
e 5 (i—-a’)

< s

’
o aTa =S4 S0
< mB‘

(©)

@
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Using above equations K’, 6’s and ¢’c are determined.
Example 5.1 Design a chimney of height 70 m and check the stresses in bars. Given
External diameter (i) attop—4m

(i)at base —4.8 m
Shell thickness (i) at top — 200 mm

(iii)at base — 400 mm
Wind intensity 1.8kN/m?, throughout,
Thickness of the fire brick lining  --100 mm.
Air gap -70°C
Coefficient of thermal expansion — 11 x 10°%/C°
Es =210 x 10° N/ mm?

Unit weight of brick lined = 20kN/m®.
Use M25 concrete and Fe 415 steel.
Solution:

For M25 concrete @, = 8.5 N/mm”
280

v m=

= 1098 = 11.
5

a,, for Fe-415 steel =230 N/mm?.

L e —mmm

4.8 i

Fig 5.8

Load at Base Section: .
Average diameter of shell at top = 38m
Average diameter of shell at base = 4.4 m.

+ 400 :
Average thickness of shell = 29——5-—— =300 mm = 0.3 m
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184+ 44
Weight of shell > "L*E‘_] x 0.3 % 70 X 25

=0762.29 kN

Diameter of brick lining at inid-height
=41-02-01=38m

=X 38 x0.1 xT0x20

= 1671.33 kN

. Total dead weight W on the base section
= 6762.29 + 8433.62 = 8433.62 kN

. Weight of brick lining -

Intensity of wind pressure = 1.8 kN/m?*

j
Area obstructing wind = 1“‘ %70 = W08 m’
Shape fuctor w 0.7
Wind lond He07x 1.8 x 308 = 188,08 kN
Its resultant may be taken as acting st a height
70
= =35m
2
M = 388,08 x 35 = 1382.8 kN-m on base section.
M 13828
Fecentricit M ——x - = ].610m =
y w " 843360 m = 1610 mm

einforcoment
et us use | per cent vertical reinforcement
Ay, at base section

-T!-ﬁxnxddoDxdm = 55292 mm?

55292

n 2

43-:25

Provide 115 number of 25 mm bars.

+» Thickness of equivalent steel ring
w25t x115

4
= 4.0 mm.
nt X 4400

Stresses at base section due to self-weight and wind load:

= 112.6

Number of 25 mm bars required =

sin2ax nx-
JEmo) m

(I, =1, 4 2 n

(1. -1,)|sinoc+(x-a)cosax |+ m ¢, mcosex

e= R
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2

(400_4)[ﬁn4z<z+x-a '+11x%¥<x
1610 = 2200(400_4)[sina+(1!—a)°050 +11xX4xmcosa

Let us try & = 70°. Then o in radians = 1.222 |
396(’i"140+ 1:—-1.222)+uxixn
4 2 2

RHS, = 2200396 [sin70+(l:-l_222)cos70]+llx4 7t cos 70

= 1660.1 mm.
But LH.S. = 1610 mm.
Let us try @ = 68° = 1.187 radians,

Then R.H.S.

sin136 mn-—1.182 4
396( 4 + > )+llx-2-x1t

396 [sin68 + (r ~ 1.187) cos 68] + 11 4 x 1 cos 68

= 1628.9

LH.S. = 1610 mm.
Let us say the solution is o = 67° = 1.169 radians

— —

2R y
v W= W&[(r, ~t,){sino.+(n - a)cosa} + m¢, ncosa]

2X 22000 '
8433.62 x 1000 = 7 o006 [(400 - 4) [sin 67 + (- 1.169) cos 67) + 11 x 4 x  cos 67]

O, = 3.683 N/mm?,

i I- w
% ¥ > O, =m0, o2 1% 368312867 _ 1506 N/mm?
1+ cosax | + cos 67

The stresses in steel and concrete are within the safe limits.

Hoop Reinforcement
Shear at the base of chimney
= H = 388.08 kN = 388080 N.
Mean Diameter =4.4 m = 4400 mm.
= D, = distance between the centres of steel
= 4400 - 2 X cover = 4400 - 2 x 50 = 4300 mm.
Provide 10 mm bars of 200 mm c/c -as hoop reinforcement..

Lever area -

Then o, = H.S = 388080 x 200 = 114,91 N/mm? < 230 N/mm>.
2A,D, 2x-:-x 10? x 4300

Hence safe. ,
Check for combined stresses due to self-weight, wind and temperature effect:

(a) Leeward side
=400 mm and f, =4 mm,
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wmvcrbeﬁﬂmm.ﬁmarcuﬁﬁmn‘i- .
350
n:-ﬁ =ﬂ.875-

Percentage steel :

E
a=11x10%c, m=1l E=—

0,,[l+(m-l)p] =11 % 1076 x 70 % 19090.9 = 14.7
05k* - mp(a—~k)
Now 0,4 =3.683 N/mm’
3.6831+(11-1)0.01]
0.5k% —11x 0.01(0.875 - k)

4051 =735 + 1.617 k- 1.415
i+ 022 -07437 =0

2
- -0,224,@ +4X 07437 _ oo

=14.7

2
o,,ll +(m —l)pl
%=k _a-k
2 k

0., = 3.683 N/mm®

36831+ (11-1)0.01 .
e n'm'—{’(“t?m?l"m = 11.16 N/mm’,

— 01—
3 RO e
Permissible value = 1'330cbc =133 %X 8.5 = 11.305 N/mm?.
Hence safe.
(b) Windword side
POy =aT
mp(a—-k)-05k* eTE
Now, g, = 17.75 N/mm'
0.01x17.75 - 210000
110010875 — k) —oSkT 1 <107 x70x—p
0.1775 = 14.7{0.09625 — 0.11k — 0.055%%]
ie., E—-2k-12373=0
. k =0.4957
2 10000

» 0.4957

o.,=aTE_k=11x 107°%x 70 x

=T7.287 N/mm? < 1.33 <85 OFK.

_L._.M = 19090.9 N/mm
11

2
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a—k 0.875 — 0.4957
=11x 7287 0.4957

= 61.34 NYmm? < 230 NMmm?. Hence safe.

o, = mo,

Stresess In Hoop Steel

¥ = —mp +Jm?p* +2mpa’
mp=11x0.01=0.11

K = —011+J(0.11)* +2x0.11x 0875 = 0.330
o/ =kKE_aTl

210000

=033x x11x107°x 70

= 4.851 N/mm? O.X.

= uxuslﬁ’gfj.‘l:"_’ =132.05 Nmm%. OK.

Hence the design is safe at base

25 ¢ ,115 Nos.

104 @ 200 clc

Fig 5.9 Reinforcement details.
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DESIGN OF BUNKERS

Bunkers and silos are structures that are used as storage tanks. The bunkers and silos
made of reinforced concrete have almost replaced the steel storage structures. Concrete bins
possess less maintenance and other architectural qualities greater than steel storage tanks.
They are used to store materials like grain, cereals, coal cement etc. They both serve the
purpose of bins. Concept and difference between bunkers and silos are explained in the
following sections:

Bunkers are mainly employed for storage of underground dwellings. These are mainly related
to emergency conditions during wars. The main two characteristics that make a bin to act as a
bunker is based on the

Depth (H)

Angle of rupture

These are characterized as shallow structures. The angle of rupture of the material in case of
bunkers, will meet the horizontal surface at the top of the bin, before it touches the opposite
side walls of the structure as shown in the figure-5.1. Bunkers may be circular or rectangular

(or square) in plan.

| b -—

S f 1
<%, | f
== \‘D"
QO% |: N2 > -~
=L Ny,
Leoe, < l
\ \
> —

] ¢sc \,/>\

A |

Fig.5.10 Sectional View of a Bunker

90+P
The angle of rupture is formed at ( 2 )from the horizontal as shown above. The angle @ is

called as the angle of repose. The lateral pressure form the material is resisted by the side
walls. The bunker floor takes up the total load of the material.
The theory used in determination of lateral pressure in bunkers is Rankine‘s Theory.

Design Consideration of Bunkers
1. Design of Bunkers with Rectangular or Square Bottom

The main structural element that constitutes a bunker is shown in figure-5.2. They comprise
of
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Vertical walls
Hopper Bottom
Edge Beam (At the top level)

Supporting Columns
|
_Horizental
_Al\\r‘ “ Edge Heams
0 materinl e

B¥

; BN

| Walls Spanning

: _—Verticsi Side
| Between Colymns

F~Columns at
corners
!

AR\ £

Fig.5.11 Structural Elements of a bunker
The design Procedure can be explained in following steps:
Step 1: Design of Vertical Walls

Based on Rankine’s Theory, the lateral pressure applied on the vertical wall can be given by

the formula

2 q—cos? @

=] > Equation-1

a—cos® &

J
cos a—\/ cos

cos + \"‘COSZ

Pa=w.h.cosa [

Where, P, = Lateral pressure intensity that is acting at a height of “h’.
L = Length of the bunker

B = Breadth of the bunker

a = Angle of surcharge (The material slope as shown in figure-5.3)

@= Angle of rupture

w = density of the material stored in the bunker
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Fig.5.12 Representation of angle of surcharge (a) and pressure component acting on
walls (p).
This pressure p, is acting in the direction parallel to angle of surcharge. So, the pressure that
is applied on the vertical walls are the horizontal component of p,. Let it be p as shown in

figure-5.12.
Hence p = po. cos @
When o = &:

Equation-1 Becomes, p, = w.h.cos @;
Hence p = w.h.cos’® —>Equation -2

Design Moments:

a) Negative Moments at the supports

P
M, =.LMB=.'MC=..MD=-E[L2 g Bz - BL]

b) Positive Bending Moment at the centre of longer sides (AB or CD)

pL2 P
s L KB4 5= BE]

c) Positive Bending Moment at the centre of shorter sides (BC or AD)

_PB2 P 12 2
= S 2Bt iR BL]
Direct Tension:

a) Tension in long walls
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b) Tension in Short walls

— PP
(5
Effective depth:
The effective depth is given by the formula

M-Tx
Q.b
M-Tx T

)

O J.d G

d=

Ag=(

To resist maximum bending moment adequate thickness should be provided. The
reinforcement details are provided for the vertical walls based on the maximum bending
moments and the direct tension design values.

The reinforcement obtained from above equation (As), is arranged in the horizontal direction.
Minimum distribution reinforcement is provided in the vertical direction.

Minimum cross section of 300mm x 300mm edge beams are provided at the top, to facilitate

attachments used by conveyor supports.

Step 2: Design of Hopper Bottom
The hopper bottom is designed for direct tension caused due to:
a) Self weight of the material

b) Self weight of sloping slab

! e
o
&

i

Fig. 5.13 Sloping slab in the hopper subjected to direct tension

141 [Page




Q" S

M

Fig.5.14 Sloping Slab in Hopper Bottom Subjected to bending
From figure-5.4 and 5.5,

wt = weight of material

Calculation of Direct tension

=Wt. cosec @

Where, 8 is the angle between the horizontal and the sloping slab

Calculation for Bending Moment

To determine the maximum moments at the supports and the centre of the sloping slab, we
need to determine the normal pressure intensity which is the sum of normal pressure due to
material weight and the self-weight of the slab

a) Due to material weight

If w = density of the material

h= average height at the centre of the slope of bottom

L = Effective span at the centre of the slope, as shown in figure-5

Then, Normal pressure intensity for depth h is

P, = ph cos?0 + whcos?0

(put, ph = cos*® from equation-2)

hence after rearranging,

Pn = wh [ cos’6 + cos’®. sin’6]

b) Due to self-weight of slab

Let Wy be the self-weight of slab

Its normal component with respect to plane of slab is given by,

= W;. cos@
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Hence total normal pressure intensity is given by,
P = (p, + W;. cosb)
Hence,
Maximum Negative Bending Moment at Supports
_PL?
12
Positive Bending Moment at the Centre
il
24
Example 5.1: design side walls and hopper bottom of a rectangular bunker of capacity
300kn to store coal using M20 and Fe 415 steel. Given unit weight of coal is 8kN/m®
And angle of repose of coal ¢ = 25°
Solution:
Volume of bunker = 300/8 = 37.5 m®
The bunker can store coal to a maximum surcharge of p = ¢ = 25°

/o.l
p’ v,
& = 25°
Vo 3ISm

v: 1.25m‘_£“
- 2
=tre T L

Fig..5.15 Dimensions of bunker

Volume of coal stored as surcharge

|
Vi=—Ah
1 3 1™

where A, is area of rectangular portion of bunker 4; — height of surcharge.
Taking size of bunker as 3 X 3 m in plan, H @
h,=15tan ¢ = 1.5 tan 25 = 0.7

vl=-;-(3x3xo.7)=2.1 m’

Let the Hopper bottom be at 45° to horizontal which is more than angle of friction between concrete
and coal (¢' = tan™ p'). Let us keep size of opening of hopper bottom = 0.5 X 0.5 m.
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Vy= (Ax"z = Az";)

L

—;(3x3x 15-0.5x% 0.5x025) = 4.48 m’
V, = Volume of chamber

=V-V, - V3

=37.5-21-448 =309 m’

~. Height of chamber 20 =3.435 m’,
3x3

Let us provide 3.5 m high chamber,
. V, provided =3x3x35=3L5m.
90 + 25

Check for bunker action: 3 X tan ( ) =47m>35m.

Hence line of [racture intersect top surface first. Hence it can be designed as a bunke

-~ Total storage capacity
=(Vy+Vy+ Va)y=(315 + 2.1 + 4.48) x 8 = 304.64 kN.

Design of Side Walls
Horizontal pressure on wall at the junction with hopper bottom
po=1hcos® ¢ =8 x 3.5 cos’ 25 = 23 kN/m’,

Comer moment in a square frame

= —-?-;*[L! +B? ‘-BL]:—%

Assuming 180 mm thick wall
L=3+018= E'._QIE
» Commer =ve moment

1
= Bxus = [9.38 kN-m

Tensile force 2 "zm = 3657 kN

Assuming 30 mm effective cover

180
= T-Jﬂ = 60 nm = 0.06 m.

This direct tension produces moment of Tx opposite to bending tension about centre line of the
seclion.

M= [938 - 36.57 x 0.06 = 17.19 kKN-m.

BM at centre of span due to horizontal pressure
c il

B
_23x3u8?
B

— Comer moment

=19.38 = 9.69 kN-m

. Moment at centre of span
=9.68 - 36.57 x 0.06 = 7.5 kN-m
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: M, tim = 0.138 f; bd* = 0.138 x 20 x 1000 x 150% = 62.1 kN/m,
But M, =17.19%X 1.5=25785 < M, ;nn
Hence thickness selected is satisfactory. Area of steel required for comer moment is given by
[ Ay 415]

25.785 x 10% = 0.87 x 415 X A, % 150 ll- T %
x150 20

476.11=A {1~
"[ 722802]

Le., - 722892 A, + 476,11 X 7228.92 = 0
By A,,= 512 mm’,
Arca of steel required to rcslst direct tension
o 15X%36.57 % 1000
0.87 x415

= 152 mmi,

* Total area of steel required

=512 + 152 = 664 mm.
Usmg 12 mm bars spacing required at corners

1—3121
1000 = 170
= 64 x .

Pruvide 12 mm bars at 160 mm cfc.
It is increased to 300 mm spacing at a height of 1.75 m. Area of sieel requin:d at mid-span (o resig

+ve bending moment is obtained by

A 415
i = 415 x X J-—
75%x10° =087 x 415 x A, iSﬂ[ PR m]

A
' 13848 = A |1-—%—
'[ 7223.91]

Al ~7228.92 A_ + 13842 x 722892 =0
= 14] mm’.
Stecl required to take up direct tension = 152 mm’,
- Total A_, required =293 mm’
Using 12 mm bars spacing

Exlf

4 %1000 = 386 mm

I=m
Provide 12 mm bars at 300 mm cfc.
Vertical reinforcement (distribution steel)
=.'?.;_§xmnx1m =216 mm.

Using 8 mm bars
X x
4

re S x 1000 = 232 mm.

Provide 8 mm bars at 225 mm c/c.

Design of Hopper Bottom

Total weight of coal to be supported
= 304.64 kN.

mm.lsomtmckhopperbotm
3+05 = 55.69 kN.
ight = %x125J2 x0180%25 =5
elf-weight = 4 X 2

=~ Total weixhtofcodndoexfnofhopperbotmasol.“+55.69-360.33I:N
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* Weight on each plate of hopper bofiom
= 90.08 kN.

. Direct tension iu sloping bottom sisb
= 90,08 cosec 45° = 1274 kN

pesign tensile force per metre width

=15% 53_:‘—4 = 63.7 kN/metre width
63.7 % 1000
= ————— = 176.42 mm’.
"= 087x415 i
But minimum reinforcement required
012

= ——xI = i
1mﬂ-x 80 x 1000 =216 mm

Providing them equally on both faces
216

A, on each face o2 108 mm’.
Using & mm bars
%xT
= x1000 = 465 mm.
"= o8

Provide 8 mm bars at 300 mm cfc on both faces.
Check for stress m = % = 13,33 It is taken as 13.

A_=180x 1000 + 216 % 13 = 182808

127.4 x 1000 2
: i == —— = (.7 N/mm" < 2.8. Hence safe.
.. Stress in concrete 182
Design of reinforcement in horizontal direction for bending in the middle strip:

Total normal pressure
P.=1h cos” 04 P, sin’ 8+ W, cos @

Now h = depth at mid point of sloping slab

207 6, 1B _sars
2 2

B=45"
py =1 hcos’ @=7hcos’ 25
p, = 8 X 4475 cos” 45 + 8 X 4475 cos” 25 sin” 45 + 0.180 X 25 X cos 45
= 35.785 kKN/m”.

3405 018 =193 m.

Effective span =

2 1
. Maximum —ve BM =ﬂl;=§2'13—5£-1—'?3—=11.1m-m,
s 12

M, = 1.5 x 111 = 16.65 kN-m
D= 180 - 30 = 150 mm
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A 415
=087x415x A x 150 | = e ¥ e
16.65 x 10° = 0.87 x o [ T 20]

A
o svmmmlileen
307.65 = A,, [1 7223.92]
Al - 722892 A,, + 307.65 x 7228.92=0
A, = 322 mm®
Using 10 mm bars

R x10?
% 1000 = 244 mun

5=

Provide 10 mm bars at 240 mm c/c.
+ve moment al mid-span

-
Pag ~ P2

2
o 35785 X193 _ ¢ 55 kN-m
24

M, = 1.5 x 5.55 = 8.25 kKN-m.

A 415
6= 0. AL TSOL |~ el R e

A
33 = | -—=
13233 = Ay [ 7228.92]

A2 -7228092 A, + 152.33 x722892=0
A, = 155.6 mm®

But minimum required = %xlﬂmxlsﬂ=21ﬁ mm?®.

Using 10 bars

T x10*
4 » 1000 = 363 mm.
216

F=

Provide 10 mm bars at 300 mm cfc.

I 300 | a®i12
3 300
:F P S— X
> 4
t p
12 cim €@ 300 F‘. ~(\1ao35°°

:

AA AR O A A A AA A

YUY Y ey

3
e

g
i

Fig 5.16 Reinforcement detail in bunker

a @ 200
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Design consideration of Bunkers with Circular Bottom

For design of bunkers with circular cross section, vertical walls are subjected to a hoop
tension along the diameter of the bunker. The value of hoop tension is given by the formula
Th = 0.5py .D

D = Diameter of the bunker

pr = horizontal component of pressure at a depth h from the top

The reinforcement details are provided to resist the hoop tension for this a minimum
thickness of 120mm is recommended.

The hopper bottom is designed for both direct and hoop tension due to normal pressure on the
sloping slabs.

Minimum vertical reinforcement is provided based on the bar used.

Design of Columns

Columns are designed for compression and bending. The loads on the columns are due to:

a) Vertical loads = weight of stored material + self-weight of members

b) Horizontal loads = Wind Loads

Example 5.2 Design a circular cylindrical bunker of capacity 300kN to store coal using
M20 concrete and Fe415 steel. Given unit weight of coal is 8kN/m*and angle of repose of
coal ¢ = 25°

Solution:
<. Volume of coal 1o be retained

= 3—:9 =375 m’.
Volume stored in surcharge at ¢ =25°

V,= ——
L

where h= -122 sin 25°
Let us‘select diameter of bunker = 3.5 m.

Then, h=375-sin25=0.74m.
2
\l,:%x’m?"s x0.74 = 2.37 m’.

Let hopper botlom be at 45° with a opening of 0.5 m as shown in Fig. 11.8. Volume of coal storec
in hopper portion
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Fig.5.17 Dimensions of bunker
r\r - I;Egﬁ-lx;xﬁx—ﬂ =56m’
374 72 3 4 12

.. Volume of cylindrical portion required
V,=37.5-237-56=2953 m’.

. Height 'k’ of cylindrical portion required is obtained by
E X350k =29.53

h=307 m.

Provide h=31m
+. Total volume of coal retained

v=vl+"uf!+V3=2.31+-2-x3.51x3.l+56 =37.8 m?
W =378 x8 =302.4 kN.

pesign of Cylindrical Walls
Py =Y hcos? ¢ = 8 x 3.1 x cos” 25 = 20.37 kN/m’
T =0.5 %x20.37 X 3.5 = 35.65 kN "~

Hoop tension
: T, = 1.5T = 1.5 x 35.65 = 53.47 kNJ--
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T, _S3ATXIO00 oo
087/, 087x415

ﬁ'ﬂ'

Using 140 mm thick wall,

- 0.2 _ 2
A, minimum = Ex 140 x 1000 = 168 mm
Using 8 mm bars
T xg?
5= iIEB—-x 1000 = 299 mm.

-, Provide 8 mm bars at 280 mm c/c for hoop tension. Provide the same as distribution steel in

vertical direction.

Design of Hopper Bottom
Provide a sloping slab also of thickness 140 mm.
Weight of coal = 3024 kN.

Mean diameter of sloping bottom
= 35;05 +014J2 =22 m.

x25 =513 kN

LS
Weight of hopper bottom = nx22x014x% —

». Tension per metre run of hopper bottom

_ 153,7 X cosec 45 — 72.37 KN/m.
22n

T, = 1.5 x 7237 kN,

1.5x7217x
W ]Il_!_} e 300 mm?

" 087 x 415

R 2
- X8
Using 8 mm bars sm -iﬁl--xmw = 167.5 mm

Provide 8 mm bars @ 160 mm c/c in the sloping direction of slab.
Check for direct stress: m = 13 A, = 140 x 1000 + 300 x 13 = 143900 mm’
Stress = T237x1000 6 503 Nimm? < 2.8 N/mm’. Hence safe
143900

Reinforcement tor Hoop Tension

Average depth of sloping bottom
- 3.|+%é tan zs»if =466 m.
0=45°, p=25°
P, =Yh cos’D + p, sin’@
=yhcos?® + v h cos’ g sin’0
=8 x 4.6 X cos? 45 + 8 x 4.66 X cos? 25 x cos’ 45 = 33.95 kN/m’
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Normal pressure due to self-weight
=W cos 0= 51.3 x cos 45 = 36.27 kN

. Normal Pressure due to self-weight per unit length = ;}E‘—i% =525kN

. Normal Pressure per unit length
=33.95 + 5.25 = 39.20 kN/m

~. Hoop tension per metre run
= 0.5 % 39.20 X 2.2 = 43.12 kN.
T,=1.5x43.12
l
Aﬂ . |5 %4312 % Um =179 mm1
087 x 415

(—}'-13 % 140 % 1000 = 168 mm’

A minimum 100
.E xﬁz
Using 8 mm bars s=i”—9—xlﬂ{}=23ﬂ.3mm

Provide 8 mm bars al 280 mm c/c.

Check for direct temsion: m =13, A
_ 4312%1000 _ o 207 N/mm? < 2.8 N/mm’. Hence safe.

= e T 142327
Nominal edge beams of size 300 x 300 mm with 4 b

93]

e 140 mn

= 140 x 1000 + 13 x 179 = 142327 mm?

ars of 12 m may be provided at junctiof.

=
> 8 da @ 200
-1 i

Fig.5.18 Reinforcement details of circular bunker
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DESIGN OF SILOS

In silos lot of weight of stored material gets transferred as axial compression due to friction
between the material and concrete wall. It results into lateral pressure. Hence Rankine theory

of lateral pressure cannot be used. The following two theories are available for fitting lateral

pressures in the silos.
1. Janssen’s theory
2. Airy’s theory

nsidering equilibrium of material of clementai
om top surfacc.

FRELy W m———— -

\(xl) Janssen’s Theory: This theory is derived by co

depth ‘dh’ stored. Referring to Fig. 11.10, at depth k fr
et G

I 1

lll'p“

t— _ "
e
'.-‘D
P
Ple
N

- -
al
>

P+ dpy

Let p, - Vertical pressure
- Horizontal intenaity of pressure
)’ = Coeflicient of friction between material stored and concrete. Hence

f = ji’p, - intensity of frictional force
Let ¥ - Unit weight of material stored

A - Croas-sectional area of silo
U - Perimeter of section of silo

Rm [ﬁl = Hydraulic mean radius

¢ - Angle of repose of stored material. Fig. 11.2 shows various forces acting on an element
depth dh of the sito. Equilibrium of vertical forces on it gives.
pyA+YAdh=(p, +dp)A+[Udh

=(p, +dp,)A + I p, U dh

SO 2
Tﬂlidﬁ,*‘# Py :dh

i.e.,
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~ «(y-EP
e #v (T R th

Since -E— = R, hydraulic mean radius,
There exist a constant ratio between horizontal and vertical pressure. [et

= KP-
K
4P = Tl — |dh.
v (T u P" RJ

dp -
(e
Y-HgP

.". Integration gives

h= ——I-R- log (‘f —u’%p,) + Constant
_p"E
K K
|08(T—!1 EP"J= -K —R"H'C

where C is also constant sinoe p.’E is constant. Substituting the boundary condition that at h = 0,
? r

P, =0, we get
logy=C
¥ H’Kp
- 5 Fr
® u__'___L_ = __"l "‘"i
Y R
Y- M'F r
TTRR™ o
Y
[] ._H'l‘
K al
or 1-5 -p,=¢
wR
R L
Pv f‘,._ﬂ'{l = ]
AL
Hence PinKpYnIE.[l_f uh]
Silos are normally having circular sections. If diameter of circular section is D, then
DI
R="2 *a_D
U nD 4
" 4K
p,= _L_D l-e D : R
"4u'K K
LIS
Iﬂd Pfl = %—-I—t ] - D *]
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Load Carrled by Wall

Weight of grain above the lower ring beam (i.e., at h = H) partly gets transferred to wall and partly to
the bottom slab. This is because of friction between the wall and the grain. Hence it may be obtained
as integral of frictional force f= |’ p;, X perimeler oras a difference between total grain weight above
the lower ring beam (at k = H) and the pressure intensity p, multiplied by area. Then

P,=YAh-p,A=A(Yh-p) (1117
W Airy suggests derivation of horizontal pressure based on the equilibrium of

(if) Airy’s Theory:
f rupture. Depending up on the plane of rupture the following

material stored above the line o

two cases arise: .
(7 Plane of rupture cuts the top horizontal surface

(i) Plane of rupture cuts the opposite vertical wall.
Case I: Plane of rupture cuts the top horizontal surface:
Fig. 11.11(a) Shows a typical situation. In this
AC is horizontal top surface

BC is line of rupture
8 - Angle of line of rupture with horizontal
b - Diameter of silo.
Koo c A "
P w
. EN
() -~
h .
| PA} /%ﬂ "
o ) < R
B be- b —
(a) (&)
Let

P, — Be horizontal reaction from wall
p’ — Coeficient of friction between the material stored and concrete.

Vertical frictional force exerted by wall on material = WPy

Let R — be the normal reactive force along plane of rupture

u = tan ¢, be the coefficient of friction

-. UR is the [rictional force along the plane of rupture

W - be the weight of material in the portion ABC (weight of wedge)
Now, AC=hcot B

- Weight of wedge

w=-xABxACY

h hcotBy

W= N -

1_,2
=—vh" cotB
ZT
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Consider the equilibrium of the wedge ABC.

S Forces in vertical direction = 0, gives
p P, +uRsin6+RcosO—W=0
R( sin 0 +cos0)=W-1'P
or =____________V'V-uP,,
i psin© + cos@

¥ Forces forces in horizontal direction = 0, gives

P,,+pReosO—Rsin6=0
P,,=R(sin 8 — p cos )

- Re — 0
| sin® - Joosd
Equating equation (1) to Eqn. (2), we get.
Usin®+ cos® sn6-Hcosd
o W(sin © — j cos 8) - p’ P, (si
-~ P(En0-pucos @) =P i
) =P, (usinb
W(ﬁO-uoo;O)-P.[llil'*lmooﬂ'li:.-w'c:::;.’
= Py [t + 1) sin 8 + (1 - py) cos 0]
‘w(" sin0 ~ pcosd
o +1)sin® + (1 — gt cos®
Dividing sumerator and denominator by cos 6, we get
T iad
(1=m") + (1 + u")tan®
tan@ - p
(1- ) + (4 + 8)an®
tan O -
(1-pp)1an® + (1 + ) tan’ 6
-dw u=tan -k
v==l=(l-'N"')m‘9"’0””")“”20

P,

P,

vh* ct®

d
2

P
=—7h
27
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® 2
Le., dv-vdn-:Oi.&.m'M“
ie. (me-p)[(x_w')ncze+(u+u')2m8wc20|
gll_w')nne+(u+p')un’0](nc’0) .
seczemmammgidgofe@dityndhmecmybemlbd.Simplifmonlnduoﬂt
equation.
2 _l"(l"m"),
tan’ 6-2itan® _'—_p‘ru' 0

\[#L.J

it
Substituting it in equation (3) and simplifying, we get

2
1 |
Py = ~7h?|-
g [J'*H’+JH(H+F'J

Noting that p, denotes the total horizontal force per unit length of wall the pressure p,
below tap .

2
aP, I
el
P T{Jl FTCI T +u‘}]

Total lateral pressurs =1 hp,
Total vertical load carried by wall = b P, y’

The depth upto which bin will act us shallow is given by

L]

an0=2
3

i.e., H+J#+p’h=£
i+ (142 '
or ﬁ={u+Jl‘- Il'l'l-l!l)

A o x
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Now CE=btan 0
~. Weight of wedge ABCD

W= y[bh— %b. b tanﬂ] = 122[% - btan6]

Considering the equilibrium of forces acting on the wedge, P, value is obtained as in equati
pre.vious case
W
(1=p’) + (1 +p')tan B
Substituting the value of W from equation (11.23),

P’I=

p. = _'y_b_(2h—btan0)(tan0— )
"T 2 (1-pp)+ (+p)tand

Differentiating P, with respect to 8 and equating that to zero for maximum P, (as done in
case), we get a quadratic in tan 8. After solving that quadratic equation we get

— r 1 ; 24 5
tan@= P 4 b J(l-uu)+—(u+u) ’
PR pEp b

Substituting the value of tan teta obtained from above equations value of Ph can be obtained

Pr="an ~ (1—pp) +(n +p)tan®
Total lateral pressure =7 b py

Total vertical load carricd by wall =7 b UL p;,
For conical hopper bottom, the surcharge pressure

where H is the depth from top of the silo.

Example 5.3A silo with internal diameter 5.5m, height of cylindrical portion 18 m and
central opening with 0.5m is to be built to store wheat. Design the silo using M20 grade
concrete and Fe 415 steel. Given

Unir weight of wheat = 8.5 kMN/nt’.
Angle of internal friciion = 28° y
Angle of wall friction = 0.75 @ while filling
= 0.60 ¢ while emptying
Pressure ratio = i—" = K = 0.5 while filling
v

Use Janssen's theory for pressure calculaticns.
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Solution:

The following figure 5.19 shows the dimensions of the silo to be designed. Slope of hopper is
kept as 45°

18.0m

X
\ 1
2.75 2.5 m
0.5

2= Ty

o 2.5 —amf

Fig.5.19
Since wheat is a granular materigl the loading cases to be considered for finding horizontal pressure
and the load carried by the wall is emptying case: For this case:
¢’ =0.6¢=06x28 = 16.8
M =030 and jt = tan @ = tan 28 = 0,532

k=10
In this problem Y=85kN/m’, b=55mandh=18m
nD’
Hydranlic mean radius =R=-—4_ HE =£ =1375m
nD 4 4
Wk, 030x10
“—h=e " h=0.
R 1.375 e
‘&
TR[ -"_,-.] 85%1375;, -
= Jomigp: B | g - pm0218R] _ _ -0218K
P v e 030 [1 e ] 33,9541 e ]
Hoop tension T= p,,P— and . A, = —li—T——
2 087x415

~ Table below shows these values at every 3 m and the reinforcement 1o be provided as hoop steel,
[t is to be noted that minimum reinforcement to be provided for direct stee] = 0.3%. Hence A
o

0.3 %150 x 1000 . . ;
== = 450 mm’, since thickness is selected as 150 mm (This is the minimum

thickness suggested).

minimum =
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3
6

9

12 .11 930 4125 reinforcement
15

33.48 o 3825 Provide minimum
3748 10307 %2 of 10mm @ 170
I8 3819 105.02 43573

Vertical Reinforcement

Provide minimum reinforcement of 10 mm @ 170 mm c/c, since axial compression works out to be
too small.

Deslgn of Hopper Bottom _

Vertical load on hopper bottom is more during filling. Hence we have 1o use
i =tan (0.7 @) = tan 196 = 0.356
K=05

WK, _ 0356x05

= h =0.129
R 1.375

Jl—-f- 8.5%1.375
-IF‘[_ ] —x———l- ~0.140h
=t owss L]

=32.83 [1 - ¢ 210
Maximum p, = 32.83[1 - ¢ * 18] = 30,436 KN/m?

_ Py _ 30436

p,= = 60.872 kN
K 05

< Load on hopper bottom from grain stored in cylindrical portion

= 60.872 X -E X 5.5 = 1446.21 kN.

Volume of hopper bottom = %[mx 275 - 1x025"] = 21.762 m?

159 [ Page




~ Weight of wheat in this portion = 21.762 x 8.5 = 18498 kN
Self-weight of hopper bottom:
Assuming the thickness to be 150 mm,

55

Mean diameter = —2-+ 0150 X 2 =2.96 m.

Thickness =0.150 m

Sloping length = (5'5 ;ﬂj) 2 =252

- Volume of concrete =nx296x0.150x 25,2
=4.93 m’,

. Self-weight of hopper bottom = 4.93 x 25 = 123.29 kN.
= Total weight on hopper bottom

W= 144621 + 184.98 + 123.29 = 1754.48 kN.

.~ Direet tension = W cosec 8 = 1754.48 x cosec 45
=2481.21 kN.
. Direct tension per metre width
< 2812 ke
mx3.5
. 1.5x143.6x1000 3
A uired = = 596.6
164 0.87%415 e
Using 10 mm bars.
% x 10?
Spaci = x1000 = 131.6 .
[EeI 596.6 o

. Provide 10 mm bars @ 130 mm c/c in the sloping direction. Curtail 50% of bars at half th
pping length of hopper bottom.

ieck for Stress in Concrete

A= 150 x 1000 + 596.6 x 13 = 157755

_ 134.0x1000

= 0.849 N/mm? < 2.8 N/mm?
157755

Direct tensile stress

W

Hence safc.'
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pesign for Hoop Tension

at mid-height of conical botiom, h =18 + %5- =19.25 m.

p— D=55;05=3.0m,
R = hydraulic mean radius

a2 comm

4
W=035, K=0.5,

WK, _ 0356x05

X =4
R YT 19.25 = 4.569

4 8.5%0.75
h 0356

[l-e""”] = 17.721 kN/m?

py= P21 o6 o kNI

" K 05
W, = 0.15 x 25 = 3.75 kN/m?

. Nowmal pressure  p, = p, cos’d5 + p, sin 45 + W, cos 45
= 35.442 cos® 45 + 17.721 sin® 45 + 3.75 cos 45
= 31.885 kN/m?
Mean diameter at centre of sloping slab
55405
2
Heop tension, T=105x321 x 31,885
= 51.175 kN per metre length

_ 15T _I.Sxﬁl.l?ixliﬂl
" 087f, 0.87 x415

+015/2 =321 m

-
—_—

=212.6 mm®.

At junction with ring beam i.e., at h = 18 m.
p,= 60872 kN/n’, p, = 31.885 kN/m?
P, =60.872 cos” 45 + 31.885 sin® 45 + 3.75 cos 45
= 4903 kKN/m’.

Diameter =55+0.15/2 =571 m.
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T= 49.03)(%11 = 140 kN

1.5 x140 %1000 :
- 581.6 mm?.
Au= ~5RTxals - oonomm
Using 10 mm bars,
_-:-xlo2
Spaci = b4 =
pacing %1000 = 135

= Provide 10 mm bars at 130 mm c/c.
Increase it gradually to 300 mm by mid depth and then maintain the spacing of 300 mm.

[

Fig 5.20 Reinforcement details
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