

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	itle AIRCRAFT SYSTEMS AND CONTROL						
Course Code	AAE01	0					
Programme	B.Tech						
Semester	V AE						
Course Type	Core						
Regulation	IARE - R16						
			Theory		Practio	ctical	
Course Structure	Lectur	res	Tutorials	Credits	Laboratory	Credits	
	3		-	3	-	-	
Chief Coordinator	Mr. R.Suresh Kumar, Assistant Professor						
Course Faculty	Mr. R.S Mr. P A	ures	h Kumar, Assista eep, Assistant Pro	nt Professor ofessor			

I. COURSEOVERVIEW:

Aircraft Systems is a course of primary important to Aeronautical Engineering students. The aim is to impart the meaning of system in generic .The course covers, the main branching of Aircraft System Systems sub systems based on functionalities .These describes the working principles and their importance to aircraft. The course also gives basic knowledge of design procedures, failure severities Safety measures of system.

II. COURSEPRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	credits
UG	AAE003	III	Fluid Mechanics And Hydraulics	3

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Aircraft Systems and Control	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	×	Videos
x	Open Ended Experime	ents					

V. EVALUATIONMETHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in aquestion.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment	pattern for	CIA
---------------------	-------------	-----

Component	Theory	Total Marks		
Type of Assessment	CIE Exam	Quiz / AAT	i otai wiai ks	
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES AREASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, andan engineering specialization to the solution of complex engineering problems	2	Assignments
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Seminars
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Seminars

3 = **High; 2** = **Medium; 1** = **Low**

VII. HOW PROGRAM SPECIFIC OUTCOMES AREASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of	2	Assignments
	aeronautical/aerospace engineering in innovative, dynamic		
	and challenging environment for design and development of		
	new products		
PSO2	Problem-solving Skills: Imparted through simulation	2	Seminars
	language skills and general purpose CAE packages to solve		
	practical, design and analysis problemsof		
	components to complete the challenge of airworthiness for		
	flight vehicles.		
PSO 3	Practical implementation and testing skills: Providing	1	Assignments
	different types of in house and training and industry practice		
	to fabricate and test and develop the products with		
	more innovative technologies		
PSO 4	Successful career and entrepreneurship: To prepare the	-	-
	students with broad aerospace knowledge to design and		
	develop systems and subsystems of aeronautical/aerospace		
	allied systems to become technocrats.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES:

The co	urse should enable the students to:
Ι	Explain the concept and meaning of system and classify the various systems required for aircraft
	and their contribution in order to fulfill the aircraft tasks.
II	Describe the various types of Electrical power generations and distribution in aircraft and impart
	the knowledge of pneumatic, hydraulic and environmental control system.
III	Demonstrate the different flight control actuators and flight control system and fly-by-wire
	control laws and give knowledge about the landing gears systems and brake management
	system.
IV	Explain the concept of different aircraft gas turbine engines and their control systems and describe
	thefuel system characteristics and their operating modes and knowledge about the fuel safety
	management.

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Define the System concepts, sub-systems, Generic system definition, inputs outputs feedback	CLO1	Define the meaning of the system and its Characteristics and identify different types of aircraft systems.
	external influence and describe the Aircraft	CLO2	Describe the airframe systems, vehicle systems of aircraft systems.
	vehicle systems, avionics systems, mission systems and their sub-systems	CLO3	Explain the generic system and operating conditions of aircraft systems.
CO 2	Describe the Electrical loads in aircraft. Explain Electrical power	CLO4	Describe the various electrical power generations in the aircraft and discover more Electric aircraft.
	DC, AC- types, variable speed constant frequency	CLO5	Estimate the electrical power requirements and can optimize the load distribution.
	(VSCS) cycloconverter, 270 V DC systems. Explainthe Basic air cycle systems, Vapour cycle systems, boost-strap systems.	CLO6	Explain the basic air cycle systems and vapour cycle systems of aircraft systems.
CO 3	Define Hydraulic systems and pneumatic systems. explain their Working	CLO7	Describe the importance of hydraulic Systems and its components and develop hydraulic systems.
principles, Typical a pressure system, Brak system, landing ge		CLO8	Describe the pneumatics systems and its components. Illustrate the importance and criticality of landing gears.
	systems.	CLO9	Recognize the applications of pneumatic systems and the application of the bleed air.
CO 4	Describe the Principle of operation of aircraft gas	CLO10	Explain the components of engine and fuel aircraft systems.
	turbine engines, Engine monitoring sensors,	CLO11	Classify the types of aircraft engine systems and advancement in it.
	Fuel systems- characteristics, components, operating modes, Fueltank safety- fuel inserting system.	CLO12	Estimate the various fuel inerting systems and indications for aircraft systems.
CO 5	Define Flight control systems- primary and	CLO13	Illustrate the importance of fly-by-wire technology in aircraft systems.
	secondary flight control	CLO14	Identify important flight control operations
	systems, Push pull rod system, Modern control systems, Digital fly by wire systems Control linkages, actuation- types.	CLO15	Estimate the various engine performances and their application in aircraft systems.

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AAE0010.01	CLO1	Define the meaning of the system and its	PO1	2
		Characteristics and identify different types of		
		aircraft systems.		
AAE0010.02	CLO2	Describe the airframe systems, vehicle systems of aircraft systems.	PO1	2
AAE0010.03	CLO3	Explain the generic system and operating conditions of aircraft systems.	PO1	2
AAE0010.04	CLO4	Describe the various electrical power generations in the aircraft and discover more electric aircraft.	PO1	2
AAE0010.05	CLO5	Estimate the electrical power requirements and can optimize the load distribution.	PO3	2
AAE0010.06	CLO6	Explain the basic air cycle systems and vapour cycle systems of aircraft systems.	PO2	2
AAE0010.07	CLO7	Describe the importance of hydraulic systems and its components and develop hydraulic systems.	PO3	2
AAE0010.08	CLO8	Describe the pneumatics systems and its components. Illustrate the importance and criticality of landing gears.	PO2	1
AAE0010.09	CLO9	Recognize the applications of pneumatic systems and the application of the bleed air.	PO3	1
AAE0010.10	CLO10	Explain the components of engine and fuel aircraft systems.	PO3	3
AAE0010.11	CLO11	Classify the types of aircraft engine systems and advancement in it.	PO2	2
AAE0010.12	CLO12	Estimate the various fuel inerting systems and indications for aircraft systems.	PO3	3
AAE0010.13	CLO13	Illustrate the importance of fly-by-wire technology in aircraft systems.	PO2	1
AAE0010.14	CLO14	Identify important flight control operations and selects suitable flight control actuations.	PO3	1
AAE0010.15	CLO15	Estimate the various engine performances and their application in aircraft systems.	PO3	2

X. COURSE LEARNING OUTCOMES(CLOs):

3 = High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course Outcomes (COs)	Prog	ram Outcomes ((POs)	Program Specific Outcomes (PSO				
	PO 1	PO 2	PO 3	PSO1	PSO2	PSO3		
CO 1	2			1	2			
CO 2	2	2	2		2			

CO 3		1	2	3	3	1	
CO 4		2	3	2		1	
CO 5		1	2	1	2	2	

3 = High; **2** = Medium; **1** = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFICOUTCOMES:

Course Learning	Program Outcomes (POs)							P O	rogran utcom	n Spec es (PS	ific Os)					
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	2												1			
CLO 2	1															
CLO 3	2													2		
CLO 4	2													1		
CLO 5			2											3		
CLO 6		2													1	
CLO 7			2												1	
CLO 8		1												3		
CLO 9			1										3			
CLO 10			3												1	
CLO 11		2											1			
CLO 12			3										2			
CLO 13		1													2	
CLO 14			1										1			
CLO 15			2											2		

3 = **High; 2** = **Medium; 1** = **Low**

XIII. ASSESSMENTMETHODOLOGIES-DIRECT

CIE Exams	PO1, PO2, PO3	SEE Exams	PO1,PO2, PO3	Assignments	PO1	Seminars	PO2, PO3
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO3						

XIV. ASSESSMENTMETHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

UNIT-I	INTRODUCTION TO AIRCRAFT SYSTEMS							
System concepts, everyday examples of systems, sub-systems; Generic system definition, inputs, outputs, feedback, external influence. Aircraft systems- airframe systems, vehicle systems, avionics systems, mission systems and their sub-systems; Specification of requirements, mission requirements, performance requirements; Operating environment conditions.								
UNIT-II	ELECTRICAL SYSTEMS AND AIR CONDITIONING, PRESSURIZING SYSTEMS							
Electrical lo primary, sec systems, var systems; Va Evaporatives	ads in aircraft. Electrical power generation and control- DC, AC- types. Power distribution ondary. Power conversion and energy storage; Load protection; Electrical load management iable speed constant frequency (VSCS) cycloconverter, 270 V DC systems; Basic air cycle apour cycle systems, boost-strap air cycle system; Evaporative vapour cycle systems; air cycle systems; Oxygen systems; Fire protection systems, deicing and anti icing systems.							
UNIT-III	HYDRAULIC SYSTEMS AND PNEUMATIC SYSTEMS							
Hydraulic sy requirements temperatures management	Hydraulic systems: Study of typical workable system, function, merits, application, system loads, design requirements; Principal components; Hydraulic fluid: required properties, operating fluid pressures, temperatures, and flow rates; Hydraulic piping, pumps, reservoir, accumulator; Landing gear and brake management systems.							
Pneumatic Typical pneu	systems ; Advantages;- Working principles ; Typical air pressure system ; Brake system; imatic power system ; Components, landing gear systems ; Classification.							
UNIT-IV	ENGINE CONTROL AND FUEL SYSTEMS							
Principle of flow, exhau control syste off takes- ne modes; Fuelt	operation of aircraft gas turbine engines; Engine - airframe interfaces; Control of fuel flow, air st gas flow- need, means, system parameters, basic inputs and outputs; Limited authority ems, full authority control systems- examples; Engine monitoring- sensors, indicators; Power ed, types, effect on engine performance; Fuel systems- characteristics, components, operating tank safety- fuel inserting system.							
UNIT-V	AIRPLANE CONTROL SYSTEMS							
Flight contro fully powers Components pilot system systems; Con	bl systems- primary and secondary flight control conventional systems; Power assisted and ed flight controls ; Power actuated systems; Engine control systems; Push pull rod system; ; Modern control systems; Digital fly by wire systems , control laws, implementation; Auto a active control technology, communication and navigation systems instrument landing ntrol linkages, actuation- types, description and redundancy.							
Text Books:								
 Moir, I. Integrati Moir, I. Education 	and Sea bridge, A, —Aircraft Systems: Mechanical, Electrical and Avionics Subsystems onl, John Wiley, 3rd Edition2008. and Sea bridge, A, —Design and Development of Aircraft Systems- An Introductionl, AIAA on Seriesl, AIAA, 2004.							
Reference B	books:							
 Pallett, I edition, Harris, I Bolton, 	E.H.J., —Aircraft Instruments and Integrated Systems ^I , Longman Scientific &Technical 10 th 1992. D, —Flight Instruments and Automatic Flight Control Systems ^I , 6 th edition,2004. W., "Pneumatic and Hydraulic Systems",Butterworth-Heinemann.							

XVI. COURSEPLAN:

The course plan is meant as a guideline. Probably there may be changes.

		Course	
Lecture	Topics to be	Learning	Reference
No	covered	Outcomes	Keleience
		(CLOs)	
1-3	Aircraft systems- airframe systems.	CLO 1	T2:2.4
4-7	vehicle systems, avionics systems, mission systems and their sub-	CLO 2	T2:2.4.3
	Systems.		
8-10	Specification of requirements- mission requirements, performance	CLO 2	T2:2.5
11 12	Operating environment conditions	CLO 3	T2.7 A
11-15	Electrical loads in aircraft	CLO 3	T1.2.1
14-13	Electrical rouge generation and control DC AC types	CLO 4	T1.2.1.1
10-18	Electrical power generation and control- DC, AC- types.	CLO 5	T1:3.1.1
19-20	Power distribution- primary, secondary	CLO 5	T1:3.2
21-22	Power conversion and energy storage. Load protection.	CLO 6	T1:3.4
23-25	Advanced systems- electrical load management systems, variable	CLO 4	11:3.5
	speed constant frequency (VSCS), Cycloconverter, 2/0 V DC		
26.28	Bosia air avala systems. Vanour avala systems, hoost stren air avala	CLOG	T1.4.2
20-28	system	CLOU	11.4.2
29-31	Evaporative vapour cycle systems. Evaporative air cycle systems	CLO6	T1·/ 3
27-51	Oxygen systems,	CLO 0	11.7.5
32	Fire protection systems, deicing and anti icing systems.	CLO 6	T1:4.5
33	Aircraft hydraulic systems- function, merits, application, system	CLO 7	T1.5.1
	loads, design requirements.		11.5.1
34	Principal components, description, applications.	CLO 7	T1:5.2
35	Hydraulic fluid- required properties, operating fluid pressures,	CLO 7	T1:5.3
	temperatures, and flow rates Hydraulic piping, pumps, reservoir,		
	accumulator		
36	Landing gear and brake management systems, Brake management	CLO 8	T1:5.9
	systems.		T 1 (1
37	Pneumatic systems, advantages, working principles.	CLO 9	T1:6.1
38	Typical air pressure system, Brake system, Typical pneumatic power	CLO 9	11:6.2
30	Landing goar systems. Classification	CLOO	T1.5 0
40	Principle of operation of aircraft gas turbine engines	CLO 9	T1.3.7
40	Engine or operation of an eral gas turbine engines.	CLO 10	T1.9.1
41	gas flow- need means system parameters basic inputs and outputs	CLUII	$R_{2} \cdot 3_{4}$
42	Limited authority control systems full authority control systems-	CLO 11	T1.93
	examples. Engine monitoring- sensors, indicators.	CLU II	11.9.15
43	Power off takes- need, types, effect on engine performance. Fuel	CLO 12	T1:9.4
	systems- characteristics, components, operating modes.		
44	Flight control systems- primary and secondary flight control	CLO 13	T1:9.5
	conventional systems.		
45	Systems control linkages, actuation- types, and description.	CLO 14	T1:3.6
46	Redundancy. Fly-by-wire control- control laws, Fly- by-wire control-	CLO 15	T1:3.7,
45	control laws, implementation		R1:5.5
47	Auto pilot system active control technology, communication and	CLO 15	T1:3.8
	havigation systems instrument fandling systems		N Э. 9.8

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSIONREQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevancew ithPS
				Os
1	Gain information about autopilot system active control technology.	Seminars	PO3	PSO 2
2	Encourage students to make case studies on different types of engine instruments, flight instruments and navigation instruments.	Guest Lecture	PO2	PSO1,PS O3

Prepared by:

Mr. R Suresh Kumar, Assistant Professor Mr. P Anudeep, Assistant Professor

HOD, AE