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COURSE OBJECTIVES:

Demonstrate concept of stability and application to dynamic systems like Aircraft, and the
role of primary controls and secondary controls in longitudinal stability.

Understand the concept of slide slip angle, roll angle and yaw angle their concepts related to
lateral-directional stability.

Learn about the mathematical modeling of an aircraft in longitudinal, lateral and directional
cases.

v Estimate the longitudinal and directional parameters with the help of the linearized equations
of aircraft motion.
vV Analyze the different type of modes in longitudinal, lateral and directional motion of

aircraft, and recovery from those modes.

COURSE LEARNING OUTCOMES (CLOs):

CLO Code CLO Description

AAE11.01 cLO1 Apply concept of stability, controllability and maneuverability in an
aircraft.
Use and interpret the basic mathematics, science and engineering for

IAAE11.02 LO?2 . o IR . I

0 cLo solving problems of longitudinal, lateral and directional static stability.
IAAE11.03 CLO3 Describe stick fixed and stick free conditions for neutral point.
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AAELL 04 CLO 4 Demonst_ratg d!fferent methods for finding static margin, control force
and CG limitation.

IAAE11.05 CLO5 Organize total stability parameters in order of merit of flight conditions.

IAAE11.06 CLO®6 Locate the cause of instability in an aircraft and solve the issue.

AAELL07 CLO 7 Iqlentlfy aircraft different types of stability for different categories of
aircraft

IAAE11.08 CLOS8 Demonstrate the aircraft component contribution for different stability.

AAEL1.09 CLO 9 Discuss and identify the stability problems of aircraft in different
phases.

AAEL1.10 CLO 10 Relate different stability criteria and do the comparative study.

AAELL 11 CLO 11 Interpret the concept behind equations of motions in different frame of
references.

AAE11.12 CLO 12 Appraise the factors that enhance the stability of aircraft during
different flight regime.

AAELL13 CLO 13 C_reate new concept of the stability in new configuration and type of
aircrafts.

AAELL 14 CLO 14 Desc_rl_be the effects c_>f_ forces and moments in disturbed or perturbed
conditions on the stability.

AAE1115 CLO 15 Discuss th_e concept of linearization of equation of motion and
aerodynamic forces and moments.

SYLLABUS

UNIT | INTRODUCTION AND LONGITUDINAL STABILITY-I

Aircraft axes system, Definition: Equilibrium, stability, controllability, & maneuverability. Examples
from simple mechanical systems for stability. Longitudinal static stability and dynamic stability for
un accelerated flight. Criteria for longitudinal static stability and trim condition. Contribution of
Principle components. Equations of equilibrium- stick fixed neutral point, elevator angle required to
trim. Definition-static margin. Equations of motion in steady, symmetric pull-up maneuver, elevator
effectiveness, elevator hinge moment, neutral point, maneuver point, static margin for stick fixed and
stick free conditions, control force and control gradient. Trim tabs and types of trim tabs,
Aerodynamic and mass balancing of control surfaces, forward and aft most limits of CG.

UNIT I LATERAL-DIRECTIONAL STATIC STABILITY

Introduction to lateral-direction stability- aerodynamic forces and moments, aircraft side force due to
side slip, aircraft rolling moment due to side slip, and aircraft yawing moment due to side slip.
Aircraft component contribution, directional static stability, Aircraft component contribution for
lateral-directional stability, rudder requirements.

uniT i AIRCRAFT EQUATION OF MOTION

LINEARIZATION OF EQUATIONS OF MOTION AND AERODYNAMIC

ONIT FORCES AND MOMENTS DERIVATIVES

v

Description of state of motion of vehicle, forces and moments as perturbations over prescribed
reference flight condition. Equation of motion in perturbation variables. Assumption of small
perturbations, first order approximations-linearization equations of motion. Linearised of force and
moment equation of motion Linearised longitudinal and lateral-directional equations of perturbed
motion. Significance of aerodynamic derivatives. Derivatives of axial, normal force components
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and pitching moment with respect to the velocity, angle of attack, angle of attack rate, pitch rate,

elevator angle.

UNIT V

AIRCRAFT DYNAMIC STABILITY

Principle modes of motion characteristics, mode shapes and significance, time constant, undamped
natural frequency and damping ratio- mode shapes- significance. One degree of freedom, two
degree of freedom approximations- constant speed (short period), constant angle of attack (long
period) approximations- solutions. Determination of longitudinal and lateral stability from
coefficients of characteristic equation- stability and lateral stability from coefficients of
characteristics equation- stability criteria, Aircraft spin- entry, balance of forces in steady spin,

recovery, pilot techniques.

Text Books

1. Yechout, T.R.et al., “Introduction to Aircraft Flight Mechanics”, AIAA education Series, 2003,

ISBN 1-56347-577-4.

2. Nelson, R.C., “Flight Stability and Automatic Control”, 2nd Edn., Tata McGraw Hill, 2007,

ISBN 0-07-066110-3.

3. Etkin, B and Reid, L.D., “Dynamics of Flight”, 3w Edn., John Wiley, 1998, ISBN0-47103418-

5.

IARE

Aircraft Stability and Control

Source from Yechout, T.R. “Introduction to Aircraft Flight Mechanics”, AIAA education

Series, 2003

Page 3




UNIT -l
INTRODUCTION AND LONGITUDINAL STABILITY

1.1 Aircraft Axes System

An aircraft in flight is free to rotate in three dimensions: yaw, nose left or right about an axis running
up and down; pitch, nose up or down about an axis running from wing to wing; and roll, rotation
about an axis running from nose to tail. The axes are alternatively designated as vertical, transverse,
and longitudinal respectively. These axes move with the vehicle and rotate relative to the Earth
along with the craft. These definitions were analogously applied to spacecraft when the first manned
spacecraft were designed in the late 1950s.

The definition of military aircraft mission payloads may cover a wide range of possibilities
including personnel, troops, support equipment and supplies in transport aircraft and internally

carried stores, externally carried stores and sensor pods on combat aircraft.

These rotations are produced by torques (or moments) about the principal axes. On an aircraft, these
are intentionally produced by means of moving control surfaces, which vary the distribution of the
net aerodynamic force about the vehicle's center of gravity. Elevators (moving flaps on the
horizontal tail) produce pitch, a rudder on the vertical tail produces yaw, and ailerons (flaps on the
wings that move in opposing directions) produce roll. On a spacecraft, the moments are usually
produced by areaction control system consisting of small rocket thrusters used to apply

asymmetrical thrust on the vehicle.

Pitch Axis

Roll Axis

Yaw Axis

Figl.1 Aircraft Axes System
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1.2 Principle Axes

e Normal axis, or yaw axis — an axis drawn from top to bottom, and perpendicular to the other two
axes. Parallel to the fuselage station.

o Transverse axis, lateral axis, or pitch axis— an axis running from the pilot's left to right in

piloted aircraft, and parallel to the wings of a winged aircraft. Parallel to the buttock line.

o Longitudinal axis, or roll axis — an axis drawn through the body of the vehicle from tail to nose

in the normal direction of flight, or the direction the pilot faces. Parallel to the waterline.

Normally, these axes are represented by the letters X, Y and Z in order to compare them with
some reference frame, usually named x, y, z. Normally, this is made in such a way that the X is

used for the longitudinal axis Fig 1.1.

1.2.1 Vertical axis (yaw)

The position of all three axes, with the right-hand rule for its rotations

The yaw axis has its origin at the center of gravity and is directed towards the bottom of the
aircraft, perpendicular to the wings and to the fuselage reference line. Motion about this axis is
called yaw. A positive yawing motion moves the nose of the aircraft to the right. 2! The rudder is

the primary control of yaw."!

The term yaw was originally applied in sailing, and referred to the motion of an unsteady ship

rotating about its vertical axis. Its etymology is uncertain.
1.2.2 Transverse axis (pitch)

The pitch axis (also called transverse or lateral axis has its origin at the center of gravity and is
directed to the right, parallel to a line drawn from wingtip to wingtip. Motion about this axis is
called pitch. A positive pitching motion raises the nose of the aircraft and lowers the tail.

The elevators are the primary control of pitch.

1.2.3 Longitudinal axis (roll)
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The roll axis (or longitudinal axis) has its origin at the center of gravity and is directed forward,
parallel to the fuselage reference line. Motion about this axis is called roll. An angular
displacement about this axis is called bank. A positive rolling motion lifts the left wing and
lowers the right wing. The pilot rolls by increasing the lift on one wing and decreasing it on the
other. This changes the bank angle. The ailerons are the primary control of bank. The rudder also
has a secondary effect on bank.

1.3 Definitions

1.3.1 Equilibrium

The four forces acting on an aircraft

f

LIlFT
=D RAG
D e
WEIGHT

v

Fig 1.3 Four forces acting on an aircraft for equilibrium

Introduction

Kinds of Equilibrium

There are three types of equilibrium, namely stable, neutral and unstable equilibrium.
Prof. Schumpeter explains the three positions with a simple illustration of a ball placed in

three different states. According to Schumpeter, “A ball that rests at the bottom of a bowl
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illustrates the first case; a ball that rests on a billiard table, the second case, and a ball

that is perched on the top of an inverted bowl, the third case.”

Figure 1

in figure 1(a), the ball is comfort at the base of the bowl. It remains in stable equilibrium. If
interfered, the ball is going to rest at its original position again. In figure 1(b), the ball is located on a
billiard table. It shows neutral equilibrium. If perturbed, the ball is going to find its balance at another
new position. In figure 1(c), the ball is stabilized on top of the upturned bowl. It is basically in
unstable equilibrium. If interrupted, the ball will certainly move down either side of the bowl and

fails to get back to its original position.

Conditions for equilibrium

Maintaining a steady flight requires a balance and is often described as an equilibrium of all the

forces acting upon an aircraft.

In a steady flight, the sum of all the opposing forces equals to zero. There can be no unbalance
forces when the aircraft is flying level or when it is climbing or descending (Newton's Third
Law). This does not mean that all the four forces are equal. It means that the opposing forces are

equal.

If the lift is greater then the lift, the aircraft will accelerate downward. When the thrust is greater
than drag, the aircraft will accelerate forward. If the drag is greater then the thrust, a deceleration
will occur.
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1.2

An aircraft in powered flight can be said to be under the influence of the four main forces:
Lift (L)

Lift of main planes, acting vertically upwards through the Centre of Pressure. The main purpose

of lift is to keep the aircraft airborne.

Lift is a mechanical force whereby it is generated by the interaction and contact of a solid body
with a fluid (liquid or gas). In order for lift to be generated, its solid body must be in contact with
the fluid. When there is no fluid, there is no lift. It does not apply for a Space Shuttle.

Lift is generated by different velocity between the solid object and the fluid. There must be
motion between the fluid and the object. If there is no motion, there will be no lift. Lift acts
perpendicular to the motion whereas drag acts in the direction opposite to the motion. (National

Aeronautics and Space Administration)

Weight (W)

Weight , acting vertically downwards through the Centre of Gravity of aircraft.

Drag (D)

Drag, acting horizontally backwards opposing forward motion.

There are 2 components under drag:

- Induced drag, which is caused from the creation of lift and increases with the angle of attack.

When the wing is not producing lift, induced drag is zero and it decreases with airspeed.

- Parasite drag, which is all drag not caused from the production of lift. Parasite drag is created
by displacement of air by the aircraft, turbulence generated by the airfoil, and the hindrance of
airflow as it passes over the surface of the aircraft or components. It increases with the speed and

includes skin friction drag, interference drag and form drag.

Thrust (T)

Thrust, of engine(s) pulling(or pushing) the aircraft horizontally forwards. It is a force provided

by the engines which is required to overcome drag (D).
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Understanding the difficulties in balancing the four forces

While weight always acts vertically downwards, lift acts vertically upwards only during level
(horizontal) flight. Lift is inclined backwards during climb and forwards during descent.
Furthermore, the centre of pressure and centre of gravity also change in the course of flight. Line

of action of thrust and drag are also similarly affected by the attitude of aircraft.

The role intended for the aircraft determines the relative position of its main planes, engines, etc.
Consider a low-winged aircraft with fixed landing gear and engine mounted on its nose. It is very
likely to have its drag centreline below that of thrust, resulting in nose down pitch (moment)
during level flight. Lift and weight are deliberately coupled to provide nose down pitch for safety

reasons.

Stable equilibrium

Definition of stable equilibrium. :

A state of equilibrium of a body (such as a pendulum hanging directly downward from its point of
support) such that when the body is slightly displaced it tends to return to its original position —

compare unstable equilibrium.

Definition of unstable equilibrium

A state of equilibrium of a body (as a pendulum standing directly upward from its point of
support) such that when the body is slightly displaced it departs further from the original
position
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Definition of Maneuverability
Maneuverability

Airplanes are not limited to being a relatively fast means of getting somewhere. Long ago thrill-
seeking pilots discovered that aircraft have the potential for providing loads of fun while getting
nowhere fast. Aerobatics are an essential skill for fighter pilots; and the training that it gives to
pilots in position orientation and judgment is considered so vital that a great deal of time is spent
teaching these maneuvers. Maneuverability is defined as the ability to change the speed and flight
direction of an airplane. A highly maneuverable airplane, such as a fighter, has a capability to
accelerate or slow down very quickly, and also to turn sharply. Quick turns with short turn radii
place high loads on the wings as well as the pilot. These loads are referred to as "g forces" and the
ability to "pull g's” is considered one measure of maneuverability. One g is the force acting on the
airplane in level flight imposed by the gravitational pull of the earth. Five g in a maneuver exerts

5 times the gravitational force of the earth
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Fig: Maneuvarability

Aileron Roll

The aileron roll is simply a 360 degree roll accomplished by putting in and maintaining coordinated
aileron pressure. The maneuver is started slightly nose high because, as the airplane rolls, its lift vector
is no longer countering its weight, so the nose of the airplane drops significantly during the maneuver.
Back stick pressure is maintained throughout so that even when upside down, positive seat pressure
(about 1 G) will be felt. As the airplane approaches wings-level at the end of the maneuver, aileron

pressure is removed and the roll stops.

Fig: Aileron roll

Loop

A loop is simply a 360 degree change in pitch. Because the airplane will climb

several thousand feet during the maneuver, it is started at a relatively high

IARE Aircraft Stability and Control Page 12

Source from Yechout, T.R. “Introduction to Aircraft Flight Mechanics”, AIAA education
Series, 2003




airspeed and power setting (if these are too low, the airspeed will decay
excessively in the climb and the maneuver will have to be discontinued.) The
pilot, once satisfied with the airspeed and throttle setting, will pull back on the
stick until about three Gs are felt. The nose of the airplane will go up and a
steadily increasing climb will be established. As the maneuver continues,
positive G is maintained by continuing to pull. The airplane continues to
increase its pitch until it has pitched through a full circle. When the world is
right-side-up again, the pilot releases the back stick pressure and returns the

aircraft to level flight.

Fig: Loop

Controllability

Controllability: the response of an aircraft in steady flight, on pilot control inputs. For instance
deflecting the ailerons: a high resulting roll rate means a fast response. Generally, an aircraft
becomes less controllable, especially at slow flight speeds, as the CG is moved further aft (my
emphasis). An aircraft that cleanly recovers from a prolonged spin with the CG at one position
may fail completely to respond to normal recovery attempts when the CG is moved aft by one or

two inches.
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Aerodynamic maneuverability vs supermaneuverability
Traditional aircraft maneuvering is accomplished by altering the flow of air passing over the
control surfaces of the aircraft—the ailerons, elevators, flaps, air brakes and rudder. Some of these
control surfaces can be combined—such as in the "ruddervators" of a V-tail configuration—but
the basic properties are unaffected. When a control surface is moved to present an angle to the
oncoming airflow, it alters the airflow around the surface, changing its pressure distribution, and

thus applying a pitching, rolling, or yawing moment to the aircraft.

The angle of control surface deflection and resulting directional force on the aircraft are controlled
both by the pilot and the aircraft's inbuilt control systems to maintain the desired attitude, such as
pitch, roll and heading, and also to perform aerobatic maneuvers that rapidly change the aircraft's
attitude. For traditional maneuvering control to be maintained, the aircraft must maintain
sufficient forward velocity and a sufficiently low angle of attack to provide airflow over the wings

(maintaining lift) and also over its control surfaces.

As airflow decreases so does effectiveness of the control surfaces and thus the maneuverability. If
the angle of attack exceeds its critical value, the airplane will stall. Pilots are trained to avoid stalls
during aerobatic maneuvering and especially in combat, as a stall can permit an opponent to gain

an advantageous position while the stalled aircraft's pilot attempts to recover.

The speed at which an aircraft is capable of its maximum aerodynamic maneuverability is known
as the corner airspeed; at any greater speed the control surfaces cannot operate at maximum effect
due to either airframe stresses or induced instability from turbulent airflow over the control
surface. At lower speeds the redirection of air over control surfaces, and thus the force applied to
maneuver the aircraft, is reduced below the airframe's maximum capacity and thus the aircraft will
not turn at its maximum rate. It is therefore desirable in aerobatic maneuvering to maintain corner

velocity.

Contribution of the aircraft Components for longitudinal stability

Wing Contribution:
Aerodynamic properties of airfoils

The basic features of a typical airfoil section are sketched in Fig. 2.2. The longest straight
line from the trailing edge to a point on the leading edge of the contour defines the chord
line. The length of this line is called simply the chord c. The locus of points midway
between the upper and lower surfaces is called the mean line, or camber line. For a
symmetric airfoil, the camber and chord lines coincide. 2.3. For low speeds (i.e., Mach
numbers M << 1), and at high Reynolds numbers Re = V ¢/v >> 1, the results of thin-
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airfoil theory predict the lifting properties of airfoils quite accurately for angles of attack
not too near the stall. Thin-airfoil theory predicts a linear relationship between the section

lift coefficient and the angle of attack a of the form

cl =a0l (a— a0)

as shown in Fig. 2.3. The theory also predicts the value of the lift-curve slope
a0 = 0cl o =2m (2.15)

Thickness effects (not accounted for in thin-airfoil theory) tend to increase the value of
a0, while viscous effects (also neglected in the theory) tend to decrease the value of a0.
The value of a0 for realistic conditions is, as a result of these counter-balancing effects,
remarkably close to 27 for most practical airfoil shapes at the high Reynolds numbers of
practical flight. The angle a0 is called the angle for zero lift, and is a function only of the
shape of the camber line. Increasing (conventional, sub-sonic) camber makes the angle for
zero lift a0 increasingly negative. For camber lines of a given family (i.e., shape), the
angle for zero lift is very nearly proportional to the magnitude of camber —i.e., to the
maximum deviation of the camber line from the chord line. A second important result
from thin-airfoil theory concerns the location of the aerodynamic center . The
aerodynamic center of an airfoil is the point about which the pitching moment, due to the
distribution of aerodynamic forces acting on the airfoil surface, is independent of the
angle of attack. Thin-airfoil theory tells us that the aerodynamic center is located on the
chord line, one quarter of the way from the leading to the trailing edge — the so-called
quarter-chord point. The value of the pitching moment about the aerodynamic center can
also be determined from thin-airfoil theory, but requires a detailed calculation for each
specific shape of camber line. Here, we simply note that, for a given shape of camber line
the pitching moment about the aerodynamic center is proportional to the amplitude of the
camber, and generally is negative for conventional subsonic (concave down) camber
shapes. It is worth emphasizing that thin-airfoil theory neglects the effects of viscosity
and, therefore, cannot predict the behavior of airfoil stall, which is due to boundary layer
separation at high angles of attack. Nevertheless, for the angles of attack usually

encountered in controlled flight, it provides a very useful approximation for the lift.
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The wing is a lifting surface which produces both Lift and Drag.
= Lift is perpendicular to free-stream velocity.
» If apre > 0, then lift vector pitches forward (nose-down direction) in the
body-fixed frame.
* Drag is parallel to free-stream velocity.
» If apre > 0, then drag also rotates in the nose-dewn direction.

To determine the contributions of Lift and drag in the body-fixed frame, these
forces must be rotated by the angle of attack and any additional wing
inclination.

r
; e
#a——Thi—airfoil theor
.

e Siall

Lift coefficient, §

/

rd
o

" Angle of attack, &

Fig: Airfoil section lift coefficient as a function of angle of attack.
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Fig: Airfoil lift and moment coefficients as a function of angle of attack; wind tunnel data

for two cambered airfoil sections. Data from Abbott & von Doenhoff [1].

Finally, wind tunnel data for two cambered airfoil sections are presented in Fig. 2.4. Both
airfoils have the same thickness distributions and camber line shapes, but the airfoil on
the right has twice as much camber as the one on the left (corresponding to 4 per cent
chord, versus 2 per cent for the airfoil on the left). The several curves correspond to
Reynolds numbers ranging from Re = 3 x 106 to Re = 9x106 , with the curves having
larger values of cfmax corresponding to the higher Reynolds numbers. The outlying
curves in the plot on the right correspond to data taken with a 20 per cent chord split flap
deflected (and are not of interest here). Note that these data are generally consistent with
the results of thin-airfoil theory. In particular: 1. The lift-curve slopes are within about 95
per cent of the value of a0 = 2w over a significant range of angles of attack. Note that the
angles of attack in Fig. 2.4 are in degrees, whereas the a0 = 2= is per radian; 2. The angle
for zero lift of the section having the larger camber is approximately twice that of the
section having the smaller camber; and 3. The moment coefficients measured about the
quarter-chord point are very nearly independent of angle of attack, and are roughly twice

as large for the airfoil having the larger camber.
Aerodynamic properties of finite wings

The vortex structures trailing downstream of a finite wing produce an induced downwash

field near the wing which can be characterized by an induced angle of attack

ai = CL meAR (2.16)
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For a straight (un-swept) wing with an elliptical spanwise loading, lifting-line theory
predicts that the induced angle of attack ai is constant across the span of the wing, and the
efficiency factor e = 1.0. For non-elliptical span loadings, e < 1.0, but for most practical
wings ai is still nearly constant across the span. Thus, for a finite wing lifting-line theory

predicts that
CL=a0 (o — a0 — ai) (2.17)

where a0 is the wing section lift-curve slope and a0 is the angle for zero lift of the section.

Substituting Eqg. (2.16) and solving for the lift coefficient gives

CL=a01+ a0 neAR (a0 — 0a0) = a(a — a0) (2.18)
whence the wing lift-curve slope is given by

a=0CL da=a0 1 + a0 neAR (2.19)

Lifting-line theory is asymptotically correct in the limit of large aspect ratio, so, in
principle, Eq. (2.18) is valid only in the limit as AR — o. At the same time, slender-body
theory is valid in the limit of vanishingly small aspect ratio, and it predicts, independently
of planform shape, that the lift-curve slope is

a=nAR/2 (2.20)

Note that this is one-half the value predicted by the limit of the lifting-line result, Eq.
(2.19), as the aspect ratio goes to zero. We can construct a single empirical formula that

contains the correct limits for both large and small aspect ratio of the form
a=mAR1+11+31AR a0 2 (2.21)

A plot of this equation, and of the lifting-line and slender-body theory results, is shown in
Fig. 2.5. Equation (2.21) can also be modified to account for wing sweep and the effects
of compressibility. If the sweep of the quarter-chord line of the planform is Ac/4, the
effective section incidence is increased by the factor 1/ cos Ac/4, relative to that of the
wing,1while the dynamic pressure of the flow normal to the quarter-chord line is reduced
by the factor cos2 Ac/4. The section lift-curve slope is thus reduced by the factor cos

Ac/4, and a version of Eq. (2.21) that accounts for sweep can be written

a=mAR 1 +r1+3nAR a0 cos Ac/4 "2 (2.22)
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Fig: Empirical formula for lift-curve slope of a finite wing compared with lifting-line and

slender-body limits. Plot is constructed assuming a0 = 2.

Fuselage contribution

Fuselage contribution to pitch stiffness The contribution of the fuselage to the pitching
moment is affected by interference effects with the wing flow field. These can be
estimated using a simple strip theory (as described, for example, in Example 2.2 of the
text by Nelson [4]), but here we will introduce a simple estimate for the destabilizing
effect of the fuselage in the absence of interference effects. Slender-body theory predicts a

distribution of lifting force given by

where St =nw2/4 is the equivalent cross-sectional area of the fuselage based on its width
w as a function of the streamwise variable x. For a finite-length fuselage, Eq. (2.30)
predicts positive lift on the forward part of the fuselage (where Sf is generally increasing),
and negative lift on the rearward part (where Sf is generally decreasing), but the total lift
is identically zero (since Sf (0) = Sf (£f ) = 0, where (f is the fuselage length). Since the
total lift acting on the fuselage is zero, the resulting force system is a pure couple, and the
pitching moment will be the same, regardless of the reference point about which it is

taken. Thus, e.g., taking the moment about the fuselage nose (x = 0), we have
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M;=— [ zdLl = —2Qa [ rdS; = 2Qa [ §pde = 2QaV (2.31)
0 ] ]

where V is the volume of the “equivalent” fuselage (i.c., the body having the same
planform as the actual fuselage, but with circular cross-sections). The fuselage
contribution to the vehicle pitching moment coefficient is then

M; 2V
f _ a (2.32)

Crll — T — —_
Q5  Se

and the corresponding pitch stiffness is

aC,y, 2y
Crrl.--. == " . —_——— '23:;:'
( ey )I_.m, Sc \

Note that this is always positive — i.e., destabilizing.

Wing-tail interference

The one interference effect we will account for is that between the wing and the
horizontal tail. Because the tail operates in the downwash field of the wing (for
conventional, aft-tail configurations), the effective angle of attack of the tail is reduced.

The reduction in angle of attack can be estimated to be

C
£ = K— (2.34)

e AR
where 1 <k < 2. Note that k = 1 corresponds to € = ai , the induced angle of attack of the
wing, while k = 2 corresponds to the limit when the tail is far downstream of the wing.
For stability considerations, it is the rate of change of tail downwash with angle of attack

that is most important, and this can be estimated as

ds F
= (Cp.)
dee wedR \“La)

wing

Control Surfaces
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Aerodynamic control surfaces are usually trailing-edge flaps on lifting surfaces that can
be deflected by control input from the pilot (or autopilot). Changes in camber line slope
near the trailing edge of a lifting surface are very effective at generating lift. The lifting
pressure difference due to trailing-edge flap deflection on a two-dimensional airfoil,
calculated according to thin-airfoil theory, is plotted in Fig. 2.7 (a) for flap chord lengths
of 10, 20, and 30 percent of the airfoil chord. The values plotted

(a) Lifting pressure coeflicient (b} Control effectiveness

Fig. Lifting pressure distribution due to flap deflection and resulting control effectiveness

are per unit angular deflection, and normalized by 2, so their integrals can be compared
with the changes due to increments in angle of attack. Figure 2.7 (b) shows the control

effectiveness

aC,

- (2.36)
oo )

also normalized by 2m. It is seen from this latter figure that deflection of a flap that
consists of only 25 percent chord is capable of generating about 60 percent of the lift of
the entire airfoil pitched through an angle of attack equal to that of the flap deflection.
Actual flap effectiveness is, of course, reduced somewhat from these ideal values by the
presence of viscous effects near the airfoil trailing edge, but the flap effectiveness is still
nearly 50 percent of the lift-curve slope for a 25 percent chord flap for most actual flap
designs. The control forces required to change the flap angle are related to the
aerodynamic moments about the hinge-line of the flap. The aerodynamic moment about
the hinge line is usually expressed in terms of the dimensionless hinge moment

coefficient, e.g., for the elevator hinge moment He, defined as
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H,

C, = — (2.37)
" %F'ﬂ' -_IH-e e ' :

where Se and ce are the elevator planform area and chord length, respectively; these are
based on the area of the control surface aft of the hinge line. The most important
characteristics related to the hinge moments are the restoring tendency and the floating

tendency. The restoring tendency is the derivative of the hinge moment coefficient with
respect to control deflection; e.g., for the elevator,

ac;,
= Lok (2.38)
&, !

The floating tendency is the derivative of the hinge moment coefficient with respect to
angle of attack; e.g., for the elevator,

. '::)C.'l.

Ch (2.39)
Pea, oy '

where at is the angle of attack of the tail.

(a) Lifting pressure coefficient (b) Hinge moment derivatives

Fig. Lifting pressure distributions (normalized by 27) due to flap deflection and to change

in angle of attack, and resulting restoring and floating tendencies of control flap. Results
of thin-airfoil theory for 25 percent chord trailing-edge flap.

The restoring and floating tendencies are due primarily to the moments produced about
the control flap hinge line by the lifting pressures induced by changes in either control
position or angle of attack. The thin-airfoil approximations to these lifting pressure

distributions are illustrated in Fig. 2.8 (a) for a 25 percent chord trailing edge flap. The
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plotted values of ACp are normalized by 27, so the average value of the ACp due to angle
of attack change is unity (corresponding to a lift curve slope of 2m). Figure 2.8 (b)
illustrates the corresponding floating and restoring tendencies as functions of the hinge
line location, measured in fraction of flap chord. It is seen that both tendencies are
negative for hinge lines located ahead of approximately the 33 percent flap chord station.
While these results, based on inviscid, thin-airfoil theory are qualitatively correct, actual
hinge moment coefficients are affected by viscous effects and leakage of flow between
the flap and the main lifting surface, so the results presented here should be used only as a

guide to intuition.
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121 EFFECTS OF CONTROL MOVEMENTS

Knowing what happens when the controls are operated is the most basic skill of piloting. It is also

among the most misunderstood. When an airplane is flying, it has a good deal of forward speed

and airflow over all of its surfaces. Control movements must be understood in terms of this

airflow and its effects.

The Elevator

The elevator controls the Angle of Attack [AOA] of the wings, and subsequently the pitch.

Pulling back on the stick results in a down force on the tail (the same thing is operating here that

was operating on the wings, only in a different direction). If the controls are reversed, the opposite

happens.

Backward stick movement forces the tail down and the nose up. This rotation occurs around the center

of gravity of the airplane. Initially the airplane, even though its nose is up, is still headed in the same

direction - the only thing that has changed is the angle of attack. But an increase in the angle of attack

results in an increase in lift, so now the airplane starts to go up. Then, like an arrow, it points into the

wind, increasing its pitch. This process continues, viewed from the cockpit as an increase in pitch, until

the pilot moves the stick forward to a neutral position and stabilizes the pitch.

The temptation to think that the stick directly raises or lowers the nose is very strong, and most of the

time, roughly correct. But if the stick is moved back when the airplane is very close to the stall the

aircraft will not pitch up much, if at all. This back stick movement and increase in AOA will stall the

wing, causing a loss of lift and acceleration downward: now the pitch moves opposite the stick

movement.
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Elevator
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Nose 5 1
U OWI
P Forcea

Effects of Back Stick Movement

Fig: Elevator effect
The Ailerons

The ailerons are a much simpler control than the elevator. Located near the wing tips on the trailing
edge of the wing, they are used in unison to change the amount of lift each wing is producing and roll

the airplane.

When the pilot moves the stick side-to-side from center, the ailerons move in opposite directions. In a
roll to the right (as viewed from the cockpit), the right aileron goes up and the left aileron goes down.
Each aileron serves to change how that part of the wing deflects the air and thus increases or decreases
the amount of lift produced by each wing. The down aileron forces the air down harder, resulting in an
increase in lift and the up aileron decreases the downward force, resulting in a decrease in lift. In the
case of a right roll, the decreased lift on the right side and increased lift on the left side result in a roll
to the right.

Operating the ailerons causes an effect called adverse yaw. Adverse yaw is the result of an increase in
drag on the wing with the down aileron, or "upgoing" wing. This wing, since it is forcing the air down

harder than the "downgoing" wing and producing more lift, also produces more drag. The drag pulls
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the wing back and causes yaw. If this yaw is not corrected with rudder, the roll is said to be

“uncoordinated."

Left

7N

‘ e || m— More Lift

Lesleift I
= @——f r

Up Alleron

Down Allercon

Stick Left

Fig: Aileron effect

The Rudder

The rudder is controlled by the "rudder pedals” located on the floor of the aircraft. They are both
connected to the rudder so that when one or the other pedals is depressed, it moves the rudder in the
desired direction. The rudder, connected to the vertical stabilizer, then starts to deflect air much like a
wing, only the resulting force is to the side. This force causes a change in yaw. As mentioned earlier,
the rudder is not used very often, but when it is needed (e.g., in a crosswind), its presence is

appreciated.
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Control Fixed Stability

Even for the controls-fixed case, our text is a bit careless with nomenclature and
equations, so we review the most important results for this case here. We have seen that
for the analysis of longitudinal stability, terms involving products of the drag coefficient
and either vertical displacements of the vehicle center-of-gravity or sines of the angle of
attack can be neglected. Then, with the axial locations as specified in Fig. 3.1 the pitching

moment about the vehicle c.g. can be written

Cineg = Cmo, + CLuw IL% - Jr%) —Cy, F_I - (% - m.jl + Co g (3.1)

F

where we assume that CmOt = 0, since the tail is usually symmetrical. Note that, as is the
usual convention when analyzing static longitudinal stability and control, the positive
direction of the x-axis is taken to be aft; 1 thus, e.g., the second term on the right-hand
side of Eq. (3.1) contributes to a positive (nose-up) pitching moment for positive lift when

the c.g. is aft of the wing aerodynamic center.

N 4 i
I |a1r4_ iRl.
l i
=
v

Fig: 3.1: Geometry of wing and tail with respect to vehicle c.g., basic neutral point, and

wing aerodynamic center. Note that positive direction of the x-axis i

where VH = (1St ¢S is the tail volume parameter . Note that this definition is based on
the distance between the aerodynamic centers of the wing and tail, and is therefore

independent of the vehicle c.g. location. Note that the total vehicle lift coefficient.
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. L1r.' + L!

s,
=Cr. —C 3.3
EES Lu 1 i||i‘ ,":1 L |: .:I

Cer

where 5 = (), /€} is the tail efficiency factor. and this total vehicle lift coefficient is exactly the
quantity appearing in the square brackets in Eq. (3.2). Now, we can introduce the dependence of
the lift coefficients on angle of attack as

CLW = C-r-u-... {QFHL + !.IL' - ﬂi]u.}

. de (3.4)
CrL, =Cyp,, |orp +4 — |50+ Eﬂb'ff.l'_

Note that, consistent with the usual use of svmmetric sections for the horizontal tail. we have
assumed ag, = (0. Introducing these expressions into Eq. (3.3), the latter can be expressed as

) . 5 ) 5 ds
Ci = Cia. (iu — a0,) + 1 Crg, lic — =0) + (-‘:f,;.,,. ot [1 - T] GL;.,) aprL  (35)
i, ﬁ

[

This equation has the form

CL=CLo+CL.0FRL (3.6)
where the vehicle lift curve slope is
5 i3
CLr: = CLH’ T ilr_f 1 - {_ C-Ll'!e qu?':l
! & da !
and ¢
Cro = Cra, (fw —aa,) + IJ%CL”. (it — =0} (3.8)

iz the vehicle lift coefficient at zero (fuselage reference line) angle of attack. Finally, if we define the
vehicle angle of attack relative to the angle of attack for zero wehicle lift, ie.,

O = Rl — g (2%
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where

c
ag = ——2 (3.10)
Cra
then
Cr=Cr.a (3.11)

where Cy, is the vehicle lift curve slope, given by Eq. (3.7).

Introducing the angle of attack into Eq. (3.2), the expression for the vehicle pitching moment coef-
ficient becomes

T, Far . 5 . . :
Creg =Crmg. + (?“ — ?) |:GL“.,. (fu — o, ) + HL_ECL"‘ (#: — En]] —qVuCry,, (i — o) +
(Z - Zoo) |Cp + 0% (1= 25 ) Cray | Vi (1= 55) Cr, + Cong, L are
I I K dev do J

(3.12)
This can be expressed in terms of the angle of attack from zero vehicle lift as

Teg _ Tac : S : ; :
— - ?) [CL::,,. (fue = a0..) + 15 ClLa, (it = Eu}] = Vi Cla, (is — £0)

C'rru_'g = G:ﬂl[l". + (

Teg Tg - _ E
+ Crnto + { ( - e ) Cr, —nVuCr,, (1 df.':) + Cos; } o
(3.13)
This equation has the form
Cm = Crrl.i] + Cm::ﬂ {31"”

with the vehicle pitching moment coefficient at zero lift

|l +( £ — ?) [CL“M. (fw — g, ) + T}:ECLQ, (4 — Eu}'] —nVuCr,, (i: — 20)+Crmaop

(3.15)
and the vehicle pitch stiffness
_ (Teg _ Tac Y _ de
Cop = ( 5 _ )GLH MVuCr., (1 dﬂ) +Cp, (3.16)
Note that Eq. (3.15) can be simplified (using Eq. (3.16)) to
Cro = Cro, —VuCLa, [ii —£p+ (1 - —:) ﬂf[l] + Cia, o (3.17)
dex

Note that Eq. (3.17) correctly shows that the pitching moment at zero net vehicle lift is independent
of the c.g. location, as it must be (since at zero lift the resultant aerodynamic force must sum to a
pure couple).

The basic (or control-fixed) neutral point is defined as the c.g. location for which the vehicle is
nentrally stable in pitch - i.e., the c.g. location for which the pitch stiffness goes to zero. From
Eq. (3.16) the neutral point is seen to be located at

IyP _ Toar » CL;“ de Cmﬂ:,r
— =— +nVu Cr. (1 dﬂ) Cr (3.18)
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Note that Eq. (3.16) for the pitch stiffness can be expressed as

e Tar CL dE C'ma
Cpo =4 — _ |2 pWg—2[1—-— | — Ly 3.19
- [ (- 5) -5 fon )

where the quantity in square brackets is exactly the location of the basic nentral point. as shown in
Eq. (3.18). Thus, we can write

Grrm = {T; - rhlp} an I[R?ﬂ}
c [

or, alternatively,

Cm _ _ (ZaE _ Za)
aCy

Thus, the pitch stiffness, measured with respect to changes in vehicle lift coefficient. is proportional
to the distance between the c.g. and the basic neutral point. The quantity in parentheses on the
right-hand side of Eq. (3.21). i.e., the distance between the vehicle c.g. and the basic neutral point,
expressed as a percentage of the wing mean aerodynamic chord. is called the vehicle static margin.®

(3.21)

c C

Static Longitudinal Control

The elevator is the asrodynamic control for pitch angle of the vehicle, and its effect is described in
terms of the elevafor effectiveness
dC 1,
N
where Cp, is the lift coefficient of the horizontal tail and 4. is the elevator deflection, considered
positive trailing edge down. The horizontal tail lift coefficient is then given by

(3.22)

ai:

AaCy . .
Cr, = ﬁntt [ + iy — £) + a.d. (3.23)
and the change in vehicle lift coefficient due to elevator deflection is
5
Crs, = qum; (3.24)

while the change in vehicle pitching moment due to elevator deflection is

S¢ 6 e —ae
G"lﬁ.- — —;Ir_t,r]r_ [—E + ﬁ]

5 T I
‘ 13.25)
4 Fap — Ty
— _GL& TE - .—3
i i

The geometry of the moment arm of the tail lift relative to the vehicle c.g. (which justifies the
second term in Eq. (3.25)) is shown in Fig. 3.1

The vehicle is in equilibrinm (i.e., is trimmed) at a given lift coeflicient Cp, ;. when

GLH“ T CL&.-‘{;L = CLtr:im

‘ (3.26)
C'rnun + Cn:.i,.ﬂr. - _C'rm:l )
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These two equations can be solved for the unknown angle of attack and elevator deflection to give

_CL.‘S, Grrli] — Cm.&, Cf.rri:u

Dirim =
a (3.27)
B o G.I'. rtcru(:' L Crrlrtc.l'.l::riu'.
Erim _-\.
where
A= —G_,'_"C"“_;l +C"“|Cg_5| f.;gq':l
Note that the parameter
A= _CL.-;.Cru:'i_ T Cru.-gc.l'..il
FI' Tae — J‘I.'j.',. -i'll.'|.: — NP
—Cra [_Cl.n, (F + T)] +Cpra (f Crs, (3.20)
fi  Tye —TNP Fin
=CL,Crs. |=+——— | =Cr.CLs, —
r Fs i
where
by = b+ Tac — NP (3.30)

is the distance from the basic neutral point to the tail aerodynamic center. Thus, the parameter
A is independent of the vehicle c.g. location, and is seen to be positive for conventional (aft tail)
confipurations, and negative for canard (forward tail) configurations.

An important derivative related to handling qualities is the control position gradient for trim, which
can be seen from the second of Eqgs. (3.27) to be given by

':I-ﬂ-e' C:l.'h’:l .
= — 3.31
dc-"— )triu: A Ir ':I

It is seen from Eq. (3.31) that the control position gradient, which measures the sensitivity of trimmed
lift coefficient to control position, is negative for stable, aft tail configurations, and is proportional
to the static margin (since A is independent of c.g. location and C,,, is directly proportional to
the static margin). In fact, using Eq. 3.29, we can see that

d'ﬁr' _ -1 IENP — Tepg
th;_ trim G"—-’i. F’

(3.32)

N

Control Surface Hinge Moments

Just as the control position gradient is related to the pitch stiffness of the vehicle when the
controls are fixed, the control force gradients are related to the pitch stiffness of the
vehicle when the controls are allowed to float free He = 0. The elevator hinge moment is
usually expressed in terms of the hinge moment coefficient Che = He QSec e (3.59)
where the reference area Se and moment arm ~ ce correspond to the planform area and
mean chord of the control surface aft of the hinge line. Note that the elevator hinge
moment coefficient is defined relative to Q, not Qt. While it would seem to make more
sense to use Qt, hinge moments are sufficiently difficult to predict that they are almost
always determined from experiments in which the tail efficiency factor is effectively

included in the definition of Che (rather than explicitly isolated in a separate factor).
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Assuming that the hinge moment is a linear function of angle of attack, control deflection,

etc., we write

Ghn = Ch‘:n “+ C;!“rk + C.ﬁeL :'5,: =+ Chﬂ'td\! {Rﬁn.:l
L] e
o v
-
v (a) (b) 5,

Figure 3.4: Schematic illustration of aerodynamic forces responsible for (a) floating and (b) restoring
tendencies of trailing edge control surfaces. Floating (or restoring) tendency represents moment
about hinge line of (shaded) lift distribution acting on control surface per unit angle of attack (or
control deflection).

In this equation, a is the angle of attack (from angle for zero vehicle lift), 4, is the elevator deflection,
and d; is the deflection of the confrol tab (to be described in greater detail later).

The derivative Cj, characterizes the hinge moment created by changes in angle of attack: it is
called the floating tendency, as the hinge moment generated by an increase in angle of attack
generally canses the control surface to float upward. The derivative Cps characterizes the hinge
moment created by a deflection of the control (considered positive trailing edge down); it is called
the restoring tendency, as the nose-down hinge moment generated by a positive control deflection
tends to restore the control to its original position. The floating tendency in Eq. (3.60) is referred
to the vehicle angle of attack, and so it is related to the derivative based on tail angle of attack oy
by

d
Ch, = (1 - d—f) Che, (3.61)

which accounts for the effects of wing induced downwash at the tail. The aerodynamic forces
responsible for generating the hinge moments reflected in the Hoating and restoring tendencies are
sketched in Fig. 3.4. Only the shaded portion of the lift distribution in these figures acts on the
control surface and contributes to the hinge moment.

The angle at which the free elevator floats is determined by the fact that the hinge moment (and,
therefore, the hinge moment coefficient) must be zero

Chn =0= Cllle:u T ':llluu'f-"t T Chﬂ.-aﬂl‘mu T Chﬂgﬁf

or

i 1 X
Setice = — G (Chey + Chat + Chs,dt) (3.62)

€ free
hs,
The corresponding lift and moment coeflicients are

CLl!‘L’(T =Craa+ CLJ, 6r!ruf

’ (3.63)
Cvni’rnt — Cnxl) 7 e C,,“,ﬂ ¥ Cm&, Ocfree
which, upon substituting from Eq. (3.62), can be written
Cr5.C o CrL;
CLﬁm- = CLn (1 = . e )O - Le, (Chpu =+ Chdldf)
CLaChs, Chs, .
(3.64)
Cma’_ Chu Cm 8. 5
Cmfr(-c - Cmo (l == —m) a+ C!nl) = Cﬁa" (Chcu 2 x Ché'ot)
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Thus, if we denote the control free lift curve slope and pitch stiffness using primes. we see from the
above equations that

Cpr; Cu
C-"—:t = CLrt (1 — ——f o )
CLHC.F&I’.;I

r C:l.'z ] Cl’l
Cru = C:l.'z 1 — —Ce 2
. - ( Cmrzch f. J

(3.65)

Inspection of these equations shows that the lift curve slope is always reduced by freeing the controls,
and the pitch stiffness of a stable configuration is reduced in magnitude by freeing the controls for
an aft tail configuration, and increased in magnitude for a forward tail (canard) configuration (in
all cases assuming that the Hoating and restoring tendencies both are negative).

Control free Neutral Point

The c.g. location at which the control free pitch stiffness vanishes is called the control
free neutral point. The location of the control free neutral point x ' NP can be determined

by expressing the pitch stiffness in the second of Egs. (3.65),
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r Cm C a
G"I._“ = C:ﬂlu- - L

CJL.‘]..
as
I N Cu.Crs (£ Far  Tep
Cot = (22— Z22) €y 4 Deotan (B T 2
& r Chri, e & &
I INP CJL.-, 5 £ T Tae —TNP Iyp — Teg
- (Tﬁ I ) Cr,+ ’-i'_f'ﬂr E - + - = (3.66)
s I Cus, S E I i
I EN Cp; C Cy .
( ':—H - "‘:P) Cr.— — + 11V o
£ F Ch;, Chs.
where a, = dCp, /34, is the elevator effectiveness and
E! Ty INP -5!
e = | = 4222 = J.6T)
Ha ( R : |5 (3.67)

is the tail volume ratio based on ¢, ., the distance between the tail aerodynamic center and the
basic neutral point, as defined in Eq. (3.30). The quantity in square brackets in the final version of
Eq. (3.66) is seen to be simply the control free vehicle lift curve slope Cp!,. so we have

Ty TNP . Chaa,
Cnt= (Z-=E)Cul+ Wi G
H 1

C

(3.68)

Setting the control free pitch stiffness C,./, to zero gives the distance between the control free and
basic neutral points as

NP ri‘.,-‘p 5 [ Chn
— == =qV —_— 3.60
= - 'H Hl.. GL:. Ghd‘ { .:I

Finally. if Eq. (3.69) is substituted back into Eq. (3.68) to eliminate the variable zyp. we have

Copy = — (T% - %‘“’) Cyl, (3.70)

Btabhrer

- Toa \‘]'.'|I."I.'H|.IJr

(a) (b)

Figure 3.5: (a) Tvpical location of trim tab on horizontal control (elevator), and (b) schematic
illustration of aesrodynamic forces responsible for hinge moment due to trim tab deflection.

showing that the control free pitch stiffness is directly proportional to the control free static margin
Thp _ Teg
c Z

static m
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Trim Tab

ginpx 'NPc¢ —xcgc 93.3.3 Trim Tabs Trim tabs can be used by the pilot to trim the

vehicle at zero control force for any desired speed. Trim tabs are small control surfaces

mounted at the trailing edges of primary control surfaces. A linkage is provided that

allows the pilot to set the angle of the trim tab, relative to the primary control surface, in a

way that is independent of the deflection of the primary control surface. Deflection of the

trim tab creates a hinge moment that causes the elevator to float at the angle desired for

trim. The geometry of
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Zero control force corresponds to zero hinge moment, or
Gl’lr. - [} — C.I'u:.. + C.I'u:-ﬁ + ':jlln'l'1 'i' -+ CJLJ‘EE

and the trim tab deflection that achieves this for arbitrary angle of attack and control deflection is

{if == {Gflr..“ + Cpao + CJL.‘]..&::} {3?1}
Chs,

=0 the tab setting required for zero control force at trim is

1 .
tyrim = - I::Chg-", + CJL.-:‘TLr:i::n + CJLJI.ae:t_rjn.j {3?2}
ki,
The values of o5y and 8., are given by Eqs. (3.27)

_GLcL Crn[l - Cru& C-r-i:rin:l

Dgrim =
Py
3.73
o= ll:.I'.rau':rrl.ll + CmuCLtrim I[ }
e trim A
al!r|:1-.| i
c.g. forward

%/ CL Lrim

Figure 3.6: Variation in trim tab setting as function of velocity for stable, aft tail vehicle.

Substituting these values into Eq. (3.72) gives the required trim tab setting as

- 1 Cm 1
Hprin, = _G_ (Cl'lrn T .:‘i” {_Chr:CLﬁ. + Cﬁd,. CLr::' T E (_ChnCmL + C.&d,. Cmn:l CLtn'm)
h i, : :
(3.74)

Note that the coefficient of C, ., in this equation — which gives the sensitivity of the trim tab
setting to the trim lift coefficient — can be written as

dd, Chs C u-cm.' CI I Cl' v = '
t _ “hd, o — h i,y _ i, C, = — hé, J".‘i.l" _ TT.F. CL. (3.75)
dCy, Cprs A Chs, Chrs, A Crs A [ : :
and Eq. (3.74) can be written
1 Cnl[l CJI..‘;. ] Jnl"\-'p Irﬁ
=——— |Ch. A _Gluc i Ch;,C a —C — - —|C rim
tirim Chd’! [ hey T A [ ! L§, + Ly e —L ] + A Ly F Ly

(3.76)
Thus, the tab setting for trim is a linear function of trimmed lift coefficient whose slope is propor-
tional to the control free static margin, This variation is shown schematically for a conventional (aft
tail) confipuration in Fig. 3.6.

Control Force for Trim
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As mentioned earlier, the most important aspects of stability relating to handling qualities
of the vehicle are related to control forces. For longitudinal control, the control force F is
related to the elevator hinge moment He through a gearing constant G, so that

F=GH, (3.77)

This equation defines a positive control force as a pull, corresponding to the force
required to balance a positive (nose up) elevator hinge moment.4 The units of the gearing
constant G are inverse length, which can be interpreted as a mechanical advantage
corresponding to radians of control deflection per unit distance (foot) of control yoke
displacement.
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Expressing the hinge moment in terms of the corresponding dimensionless coefficient, we have
Bie= (;Sc('cQCh, = GS,.(-?,,Q (Che., + Cha+ Ch(;'_()'e + C},o"b‘g) (3.78)

Since this equation is linear in tab deflection, the control force required for a tab setting other than
the trim value is
F = GS.¢.QChs, (6 — b4,....) (3.79)

and, substituting the tab setting required for trim from Eq. (3.76), we have

. N Cm C ) ' Ceg — N >
F= ("SCECQ Ché.ol + Chru 25 - (_ChnCLa', =+ ChO'rCLn) ¥ ﬁcl-a (%) CLtrim]

A A
(3.80)
Finally. substituting
W/S
Chrisim = — 3.8
Ltrim (J ('; 1)
for level flight with L = W, we have
“Crs CLl (2ee —Zp
F =GS.é.(W/S) ""‘A Lo (l 8 TNF ) +
' I
(3.82)

. Cm 1 -2
(;S,..(_?: [Chéeo‘ + Chcu & To (_C'luCLé. + Chd} CLn) ;P‘-

The dependence of control force on velocity described by this equation is sketched in Fig. 3.7. Note
from the equation that:

1. The control force F x S.é,. i.e, is proportional to the cube of the size of the vehicle: control
forces grow rapidly with aircraft size, and large aircraft require powered (or power-assisted)
control systems.

o

The location of the c.g. (i.e.. the control free static margin) affects only the constant term in
the equation.

3. The vehicle weight enters only in the ratio W/S.

4. The effect of trim tab deflection &; is to change the coefficient of the V2 term, and hence
controls the intercept of the curve with the velocity axis.

4. The effect of trim tab deflection d; is to change the coefficient of the V? term, and hence
controls the intercept of the curve with the velocity axis.

If we denote the velocity at which the control force is zero as Vi, then Eq. (3.82) gives

Cm |
(';-";::Ec (Chﬁi IS! + Chn“ + < [_Chﬂcf_é,. + C-’Iﬁ,.CLH}) Eppii:inl =

A
. , (3.83)
— G8.7 (W) it (Tes — TNp
cl(W/8) = _
s0
Ch;. CLl fxo. — 2y .
F = GS.&(W/S) "1 Lo (I £ ;”) 11— (V/Vicim)?] (3.84)
and dF 2 C.; Cp. !
Bl _ 5 £(W/5 b, Lo [ Teg —Typ 3 85
dl") ¥, 1';!: rim ﬂ“i-{ IJII } A = { j}
These last two equations, which also can be interpreted in terms of Fig. 3.7, show that:
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Control-force for Maneuver

Perhaps the single most important stability property of an aircraft, in terms of handling
properties, describes the control force required to perform a maneuver. This force must
not be too small to avoid over-stressing the airframe, nor too large to avoid making the
pilot work too hard. We will again consider the steady pull-up. The change in control

force required to effect the maneuver is

is
AF = G5 QAC, (3.86)
where

."J.C.Ill = Cj“:l.":'l.fl + G,l,,.;_ Ad,. + C.l,qr;' (3.87)
where § is the dimensionless pitch rate, as defined in Section 3.2.1. It was also seen in that section
that the dimensionless pitch rate for a pull-up could be related directly to the excess load factor
in—1), so, using Eq. (3.48), we have

(m — 1)Cy
':'“

_"'I.C_f“. = Cf.rt:'l.il + CII“._;I .:'l.ﬁ;, + Chq I.S-.QH.:I

The derivative C, g arises from the change in hinge moment due to the change in tail angle of attack
arigsing from the pitch rate. Thus

H,
AC;, = Gy, Aoy = Cy,,, ': g (3.89)
and 50 i_
Ch, = —2= =220, (3.90)
T a4 7 '
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Now, we can use the solution for Ad, from Eq. (3.52)

. |:1'1 — I}CH' CLq Gm.q
.&.L”L- -_—— 1 - C:ﬂlq:g C [+ 391
) A 2u N 2 - ( )
along with the lift coefficient equation, Eq. (3.49), which can be written
1 Ce, .
Ao = —— I:n —1)Cw | 1- — Cps Ad, (3.92)
Loox . 2|“- ! .
in the hinge moment equation to give
n—1 Cp Ad, ( — 1Cw
AC,, =Chp.— || 1- ilCy -C Cp; Ad. + - W 3.03
he = Cha g [( o ) w — Curs, 1] + Chs, o hg (3.93)
which can be rearranged into the form
ﬂc_& - Cu' CI_ CJL.-J ﬂ|§:: CL::;
- = 1 - Ci C —Cy; 3.0
n—1 Cg, [( 2 ha T 3 L R MeCr. (3.94)

Finally, using Eq. (3.57) for Ad,/(n — 1), the equation for the hinge moment increment can he
written
AC,, CwCi,Ch;, 1 Ciry
n—1 A 2u

(3.95)

mcg —IMP -& Chu + GIIH?
& Cr,Chs,

C Lo 3.“ -C Lyg

The control free maneuwver point is defined as the c.g. location for which the control foree gradient
(per g) (or, equivalently, the hinge moment coefficient gradient) vanishes. This is seen from Eq. (3.95)
to give

TMP—Typ A (G"'" Chyg ) (3.06)

c CL:; C.& A CL o 2‘.“ - CL q

Note that this quantity is positive for aft tail configurations, and negative for forward tail (canard)
confisurations. Substitution of this expression back into Eq. (3.95) then gives

-'jlchr. C“ICL:;CJU’;I. GLq -rrg - E:ZUP -
n—1 A (1 T . (3.97)
Finally. the control force gradient (per g) is
aF _AF o AC,,
n n-—1 e 1
3.98)
as.c QGHGLuGJLJ. Cry\ (T —Typ (5.8
o A 2 &
or, since QCy = W/S,
dF Cr! Chs Cpr Teg — I
= GS. A (W/e)—me 2% (] - 4 T MP 3.99
an e ) A 2 é { )

The distance —J-U"—ﬂ seen from the above equation to be directly related to the sensitivity of
normal ac I."Fl("l‘dtlﬂll of the vehicle to control force, is called the control free maneuwver margin.

Note that the control force gradient (per g) is
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Upper limit (maneuverability)

Lower limit (stability)
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Figure 3.8: Allowable c.g. travel as imposed by limits on control force gradient (per g).

1. Directly proportional to the vehicle wing loading W/ 5:
2. Directly proportional to the cube of the linear size of the vehicle;
3. Directly proportional to the (control free) maneuver margin (x'y,p — x.g)/ ¢ and

4. Independent of airspeed.

The control force gradient should be neither too small nor too large. If the gradient is too small,
the vehicle will be overly sensitive to small control inputs and it will be too easy for the pilot to
over stress the airframe. At the same time, the control forces required for normal maneuvers must
not be larger than the pilot can supply (or so large that the pilot becomes unduly tired performing
normal maneuvers). The lower and upper limits on control force gradient (per g) determine allowable
rearward and forward limits on c.g. travel, as sketched in Fig. 3.8. The values of these limits will
depend on the vehicle mission; in general the limits will be higher for transport aircraft, and lower
for vehicles which require greater maneuverability (such as military fighters or aerobatic aircraft).

Causes the lift curve slope to decrease as the angle of attack increases and a point is reached when
the slope becomes zero; this is the point of maximum lift coefficient, C1 max, which denotes the
stall. The angle of attack at the stall, is known as the stalling angle of attack and is the greatest angle
of attack at which the aircraft can be maintained in steady, 1g flight. Any further increase in angle of
attack will produce a decrease in lift coefficient and the lift force is then less than the weight of the
aircraft. In this state, the aircraft will sink and, usually, pitch nose-down in the stall. The stall denotes
the boundary of controlled flight and defines the low speed limit of the performance envelope of the
aircraft. The stall is normally preceded by aerodynamic buffeting caused by the separation of the
flow. This acts as a natural stall warning and the stall buffet boundary is sometimes used as the low

speed limit to performance; the airworthiness requirements contain a number of definitions of the
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stall and stall boundaries. Since the stall is an uncontrollable state of flight, all speeds scheduled for

operational maneuvers will have a margin of safety over the stall speed.

The lift characteristic can be modified by leading edge and trailing edge flaps (and other devices), so
that the aerodynamic properties of the wing are better suited to the different performance regimes.

Figure 1.14 shows the general effects of leading and trailing edge flaps.

e The basic plain aerofoil is optimized for cruising flight; it has low drag and cruising flight
takes place at a low angle of attack and hence a low lift coefficient. However, the stalling lift
coefficient of the plain aerofoil would be too low for the take-off and landing maneuvers and
would result in speeds for these maneuvers that would be too high. Assuming a safety
margin of speed over the stall, the minimum speed in a maneuver will be typically 1.2Vs and
the speed scheduled for take-off or landing will be based on a lift coefficient of
0.7Cimax(Fig.1.13).

Lift coefficient

Angle of attack

Figure:1.15 The effect of flaps on the lift characteristic

o Leading edge flap deflection has the effect of extending the lift curve to a higher stalling
angle of attack, and hence lift coefficient. This would enable the take-off and landing speeds
to be reduced, but it would result in a high nose-up attitude because of the large stalling

angle of attack. The leading edge flap will also increase the drag, particularly at a low angle
ofattack.

e The deflection of the trailing edge flaps has the effect of increasing the camber of the
aerofoil section and thus shifting the lift characteristic upwards as the zero lift angle of

attack becomes more negative. There is also a tendency to decrease the stalling angle of
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attack slightly. The trailing edge flap allows higher lift coefficients to be achieved at lower
angle of attack and, thus, at lower pitch attitudes. The deployment of the trailing edge flap is
often made in several stages. First, a rearward translation of the flap without significant
deflection extends the wing area. Effectively, this decreases the wing loading and permits
increases in lift coefficient. Secondly, deflection of the extended flap increases the aerofoil
camber. Effectively, this shifts the lift curve upwards and increases the lift coefficient for a
given angle of attack. There may be a number of stages of deflection optimized for take-off,

climb, descent, approach and landing.

Flap systems are often combined with slats and slots, and a flap extension may open a slot between
the flap and wing, or expose a slat, to assist the flow over the aerofoil. A combination of leading
edge and trailing edge flap can be found that permits the take-off and landing maneuvers, and other
maneuvers, to be carried out at reasonable speeds and safe pitch attitudes. Fig 1.16 shows typical

flap and angle of attack combinations for the principal states of flight.

Zero-lift compressibility

Cd0

cd0-compressibility-factor .
incompressible | compressible

Cd0-2

Cd0-1

Note that the ‘steepness’ of
the drag rise depends on

all three parameters:

o cd0-compressibility-factor
o clesign-cruise-mach

o cd0-compress,start-mach.

Mach

cd0-compress.start-mach desian-cruise-mach
(default = 0.6) )

Figure:1.16The compressible lift coefficient

1.3  The effect of Mach number on lift:

The main flight variable that affects the characteristic of the lift force is the Match number. As the
Mach number of the airflow increases, so the characteristics of the flow change from those of an

incompressible fluid to those of a compressible fluid.
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This modifies the pressure coefficients, and hence the force coefficients, generated by the aircraft.
The compressible flow coefficients are related to the incompressible flow coefficients by the

Prandtl-Glauert factor, So that the compressible lift coefficient is given by,
Cre =Cu/B
Where

B=+/(1-M")for M < 1.

The ratio between the compressible and in compressible lift coefficients is shown in Fig 1.15

Whilst this effect appears to be very significant when seen in terms of the lift coefficient, its real
effect is felt on the angle of attack of the aircraft. Since the aircraft flies at (almost A) constant
weight, the lift coefficient decreases with Mach number on the angle of squared and, at high

subsonic Mach numbers, the angle of attack of the aircraft will be small.

Figure 1.16 shows the typical effect ofMach number on the angle of attack required for steady,
legal, flight at constant aircraft of Mach number on the angle of attack required for steady, level,
flight at constant aircraft weight in compressible flow when compared within compressible flow. It

can be seen that the effect of Mach number on the angle of attack is relatively small.

Therefore, it is not likely to produce very significant effects on angle of attack dependent variables in

the normal, subsonic, range of the operating Mach number.

1.4 The side force, Y

The aerodynamic side force generated by the aircraft arises from side slipping flight. If can be

regarded as a lateral lift* due to the sided slip angle, which acts as a lateral
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COMPRESSIBILITY CORRECTION:
EFFECT OF M, ON Cp
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Cp at a point on an airfoil of fixed shape

Flight Mach Number, M.,

Figure:1.17 The effect of Mach number on Angle of Attack

Angle of attack; the comments on the lift force can be generally applied to the side force. In
symmetric flight there is no sideslip and the aerodynamic side force will be zero. Except in special
cases in which the aircraft is in asymmetric flight, for example — flight with asymmetric thrust

following an engine failure — the side force has little significance on performance.

1.5 Thedrag force, D

The drag force is the most important aero dynamic force in aircraft performance. In subsonic flight,
it is made up of several components, each of which has its own characteristics. The components are
the lift independent drag, D,, the lift dependent drag, D;, and, at high subsonic Mach numbers, a
volume dependent wave drag, D,,. The sum of the drag components makes up the total drag of the

aircraft.
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It is usually assumed in the analysis of subsonic performance that the drag polar of the aircraft is
parabolic and represented by the lift dependent and lift independent terms only, the drag coefficient

being given by,

Cp = Cp, + KCL.

Where z and K are constants.

Whilst this approximation is used to develop the basic functions of aircraft performance it should be
remembered that the real drag characteristic will not be purely parabolic but will contain terms
dependent on Mach number. Moreover, particularly at the higher subsonic Mach numbers, the drag
characteristic of the aircraft may deviate considerably from the parabolic approximation. In the
following subsections, each element of the drag force will be considered separately and the effect of

the flight variables, Mach number, weight and altitude, will be assessed on each element.

DRAG POLAR

» Cpis parasite drag coefficientat zero lift (o =0)

» Cp, drag coefficientdue to lift (induced drag)

* Oswaldefficiency factor, e, includes all effects from airplane
» Cp,and e are known aerodynamics quantities of airplane

-

_ _ C; i _
C,=C,,+—2—=C,,+C
=D~ D0 <D0 T =B
eAR ’
G Drag polar
@
Cpo !
= 5
Cpo “)
'
-) 0 (+) CL
Example of Drag Polar for complete airplane -
Figure:1.18 The zero-lift drag coefficient
15.1 The lift independent drag, D,
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The lift independent drag coefficient can be broken down into two parts, the surface friction drag
and the profile drag. The surface friction drag coefficient, usually accounts for about 75 of the lift
independent drag and tends to decrease slightly as the Mach number increases, as the result of a

Reynolds number effect.

The profile drag coefficient, which accounts for the other 25% of the lift independent drag, is a
pressure dependent drag. This is affected by the Prandt-Glauert factor in the same manner as the lift

coefficient, increasing rapidly as the Mach number approaches unity, see Fig 1.17.

Here, it can be seen that the value of remains almost constant up to a Mach number of about 0.7; this

is typical for a conventional subsonic aircraft.

When the compressible, zero-lift, drag coefficient is multiplied by the dynamic pressure, to turn to
into a force, the effect of the Mach number can be seen when compared with the assumption of the
constant from the parabolic drag polar, see Fig 1.18. There is good agreement between the predicted
drag forces up to a Mach number of about 0.8, above which the compressible flow drag force

increases significantly.

The forces are expressed here as Drag Area, D/S, which is a convenient way of expressing the drag

without involving the scale of the aircraft:

The zero-lift drag force is directly proportional to the atmospheric pressure, p, since the drag force is
proportional to the dynamic pressure, g, and above equation. Thus, for flight a given Mach number,
the zero-lift drag force will decrease as altitude increases since the atmospheric pressure decreases as

a function of altitude.
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Zero-lift compressibility

CdO

incompressible i compressible

cdO-compressibility-factor

Cd0-2

Cd0-1

MNote that the ‘steepness’ of
the drag rise depends on

all three parameters:

e cdO-compressibility-factor
e design-cruise-mach

e cd0-compress.start-mach.

Mach

|

cdO-compress.start-mach

desigh-cruise-mach
(default = 0.6) )

Figure:1.19 Effect of Mach number on the zero-lift drags force

Aircraft weight has no effect on the zero-lift drag force.

1.5.2 The lift dependent drag D,

The lift dependent, or vortex drag coefficient, is a function of the angle of attack, and is usually
taken to be

CDi= kCE

Where K is generally assumed to bel/ IT A, in compressible flow.

His approximation is based on the aspect ratio of the wing, A, and the span efficiency factor, e,
which is a function of the span wise wing load distribution. However, there may be contributions to
the lift force from partsof the aircraft other than the wing, notably the tail plane, and basing the lift

dependent drag factor, K, on the wing alone is likely to be optimistic.

Flow separation at low airspeeds may also contribute to the effective value of the lift dependent
drag factor; although it may not be strictly dependent on the lift force itself. In addition, the vortex
drag is a function of angle of attack, and the Mach number effect on shown in Fig 1.16, will produce
a further contribution to the value of K.
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The value of the lift dependent drag factor, K, will usually have to be determined experimentally but
it can be generally accepted as being reasonably constant over the working range of the lift

coefficient.

The lift dependent drag force, D;, is given, as a drag area, by

K(W/S)*
T
D/S = ¢gKCy %TPME

And is shown in Fig 1.19, for a given weight and altitude combination;

Since the lift dependent drag force is inversely proportional to the dynamic pressure g, it will
decrease with Mach number squared and increase with increasing altitude. Increasing aircraft weight
will also increase the lift dependent drag force.

Slow Fast
O L e
A .

s ny
Total : : .
Drag ' I
Minimum |«
drag
S
Slow Airspeed Fast
(high angle (low angle
of attack) of attack)
Figure:1.20 The lift dependent drag
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1.5.3 The volume dependent wave drag, Dy,

As the aircraft passes through the air mass its volume displaces the flow and produces local
disturbances in flow velocity. At the critical flight Mach number, M., the local flow at points on the
aircraft becomes supersonic and shock waves begin to form, growing in strength as the flight Mach
number increases. The energy required to sustain these shock waves manifests itself as a drag force

that increases rapidly as the flight Mach number exceeds its critical value.

There is no simple expression for the volume dependent wave drag. However, experimental results
indicate that, above the critical Mach number, the volume dependent wave drag coefficient is related
to the volume, and other dimensions, of the aircraft by a relationship — based on the slender body
theory of the form,

Cl}'ﬁ'\' X Kt}\r{}ih

Where K, is a shaping factor, which is a function of Mach number. A first-order approximation to K,
is that K, increases as Mach number squared above M, in the transonic region. In supersonic flight
beyond the transonic region, KJ, tends to decrease. On this assumption, the volume dependent wave
drag can be expectedto increase as the fourth power of Mach number in the transonic region. This
indicates the significance of the wave drag term in the drag characteristic of the aircraft above the
critical Mach number, as shown in Fig1.20.

As in the case of the zero-lift drag, the volume dependent wave drag will decrease as altitude

increases for a given Mach number and is independent of aircraft weight.
1.5.4 The overall drag force, D

The overall drag force is the sum of the components of the drag force, the zero-lift drag, the lift
dependent drag and the volume dependent wave drag. Each component has been shown to be a
function of Mach number, altitude (or pressure) and, in the case of the lift dependent drag, aircraft.

The drag characteristic is shown in Fig 1.21. For a given weight and altitude combination.
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120 |

Figure:1.21 2The volume dependent wave drag

Figure 1.21 shows that, below the critical Mach number, there is a reasonable comparison between
the compressible flow drag characteristic and the incompressible approximation. This justifies the
use of the simple, incompressible, parabolic drag polar in the development of the basic expression of
performance. However, it should be remembered that the parabolic drag polar is an approximation
and that any performance characteristics estimated on the assumption of a parabolic drag polar will
not be exact. In practice, it will be necessary to measure the performance of the aircraft in flight to
define the actual performance achieved. At Mach numbers above are critical value, the drag force
increases rapidly and the approximation becomes invalid; any estimation of the aircraft performance
above M will need consideration of the full drag characteristic of the aircraft.

4000 r Compressible ‘
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Incompressible

)
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Mach number

Figure:1.22 The aircraft drag polar
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Introduction to lateral-direction stability- aerodynamic forces and moments, aircraft side force due
to side slip, aircraft rolling moment due to side slip, and aircraft yawing moment due to side slip.
Aircraft component contribution, directional static stability, Aircraft component contribution for

lateral-directional stability, rudder requirements
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UNIT 1
LATERAL-DIRECTIONAL STATIC STABILITY

Aims of study

Suppose we have an aircraft in some state of steady flight. If it is disturbed, by a gust say, or by the
pilot, it is regarded as stable if it returns to a sensibly steady state within a finite time. The final state,
however, does not have to be identical to the initial state, although it often will be. Depending on
circumstances we may be able to tolerate a small degree of instability or even deliberately design an
aircraft to be quite unstable; in the latter case, however, a reliable automatic stabilization system will
be required. We normally require more than mere stability; the response to gusts must not make the
pilot's task difficult, produce an uncomfortable ride for passengers, impose excessive loads on the
aircraft, or make the aircraft unsuitable as an aiming platform. The pilot must be able to control the
aircraft accurately without having to perform excessive feats of skill or strength. Our first aim then is to
study the dynamics of the aircraft and its interaction with the aerodynamics in order to be able to assess
and possibly improve the dynamic characteristics. A further aim is to understand the physics of the
processes involved. If necessary we make approximations as, while better numerical results can
generally be found using a computer, little real understanding follows its use alone. With a good
understanding of the physics involved, solutions to design problems can be put forward.

One of the reasons that the Wright brothers were successful in designing and constructing the first
man-carrying aircraft was their realization that it was necessary to provide control about all three axes.
It is all too evident from cine film of many of the early attempts to fly that control in roll was
desperately needed, not least to react the propeller torque. The Wrights used wing warping and, for
good measure, used coupled contra-rotating propellers. Shortly after their first flight, ailerons were
invented and are almost universally used today. In this chapter we consider control and stability about

the roll and yaw axes. We also introduce a notation which will be made much use of in later chapters.

2.1 Introduction to lateral stability

Lateral stability is the stability displayed around the longitudinal axis of the airplane. An airplane that
tends to return to a wings-level attitude after being displaced from a level attitude by some force such

as turbulent air is considered to be laterally stable.

Three factors that affect lateral stability are:
* Dihedral
» Sweepback

*» Keel Effect
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Dihedral

Dihedral is the angle at which the wings are slanted upward from the root to the tip. [Figure 2.1]
The stabilizing effect of dihedral occurs when the airplane sideslips slightly as one wing is forced
down in turbulent air. This sideslip results in a difference in the angle of attack between the higher
and lower wing with the greatest angle of attack on the lower wing. The increased angle of attack
produces increased lift on the lower wing with a tendency to return the airplane to wings-level

flight. Note the direction of the relative wind during a slip by the arrows in figure 2.1

} Ppws —— /3
DIHEDRAL ANGLE

Fig. 2.1. Effect of dihedral

Sweepback

Sweepback is the angle at which the wings are slanted rearward from the root to the tip. The
effect of sweepback in producing lateral stability is similar to that of dihedral, but not as
pronounced. If one wing lowers in a slip, the angle of attack on the low wing increases, producing
greater lift. This results in a tendency for the lower wing to rise, and return the airplane to level
flight. Sweepback augments dihedral to achieve lateral stability. Another reason for sweepback is
to place the center of lift farther rearward, which affects longitudinal stability more than it does

lateral stability. [Figure 2.2]
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Fig 2.2 Effect of sweepback

Keel Effect
Keel effect depends upon the action of the relative wind on the side area of the airplane fuselage.
In a slight slip, the fuselage provides a broad area upon which the relative wind will strike, forcing

he fuselage to parallel the relative wind. This aids in producing lateral stability. [Figure 2.3]

Fig 2.3 Effect of keel
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Simple lateral aerodynamics

We first consider some of the simple background aerodynamics, assuming that the aircraft has

conventional flap type controls and a conventional layout.

Aileron and rudder controls

To start our discussion we look at the relation between the rudder angle and the resulting yawing

moment. Consider the aircraft shown in figure 6.1, where ~' is the rudder deflection angle from the

neutral position, positive as shown. The sideways lift on the fin will be Y~, = {pV~SFa~ where SF is

the fin area and a~ is the rudder lift curve slope. Assuming that the centre of pressure of the lift on the

fin due to rudder deflection is a distance IR aft of the cg, the yawing moment produced will be negative

(see figure 2.4) and can be written

NR=N€‘¢

l;!’{' ="_9NR

9

=—4pV Sclray

In this expression we have used ( a s a suffix to indicate differentiation with respect to rudder angle, a practice we

often use. The superscript is to emphasize that the quantity is dimensional; it can be pronounced as

‘ord". The side force will also produce a rolling moment as shown in figure 2.4 and we introduce a

derivative L~. to represent this effect.The ai.lerons are designed to produce a rolling moment which we

write in a similar manner as L™ = L, .~j. Here L; also will be a negative quantity as positive aileron

angle is defined as
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Fig 2.4 Effects of aileron and rudder deflection: (a) plan view, (b) rear view

starboard aileron down, giving a positive lift on that wing and hence a negative rolling moment. The
increase of lift on the starboard wing increases the trailing vortex drag, giving a yawing moment in the
positive sense. Similarly the drag on the port wing is decreased adding to the positive yawing moment.
From figure 6.1 it can be seen that the yawing moment due to aileron opposes the turn. This effect is
known as the 'adverse yawing moment due to aileron’, and particular measures may be taken to reduce
it. The rolling moment from the rudder is adverse at low incidence, but helpful at high incidence,
depending on whether the centre of pressure is above or below the x-axis. However, the moment arm
of the fin side force is generally small and this is therefore usually a much less serious effect. It should
be noted that both the aileron and the rudder produce rolling and yawing moments,in different

amounts, and so usually have to be used in a coordinated manner.

Sideslip

A pilot, by suitable adjustment of the controls, can fly an aircraft steadily in a straight line but with its
longitudinal axis at an angle to the direction of flight. This manoeuvre is a 'straight sideslip’, the drag is
increased and so it is occasionally used to lose height. Normally the aircraft will be at a small roll angle
so that there is a component of the weight to balance aerodynamic sideforces. Consider the aircraft
shown in figure 6.2(a) which is in a steady sideslip, but with the wings level. The aircraft has velocity
components V¢ along its X-axis and v along its Y-axis, resulting in a sideslip angle, fl, between its
longitudinal axis and the direction of flight. If we neglect any interference effects from the wing or

fuselage, the fin incidence angle will be fl, as shown, given by
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Fig 2.5 Velocities and angles in a sideslip: (a) plan view, (b) rear view

assuming that beta is a small angle. This will give a sideways lift on the fin of

- 2 F - F
Yin =3pVeSea; -B=4pV.Spa; v
where a F is the fin lift curve slope. Assuming that the fin lift acts at a distance IF aft of the cg,

there is a positive yawing moment which we write

Nﬂn = Ny hn’ v

Nv,ﬁn = '!'puSFIFﬂlI:
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Other components of the aircraft produce yawing moments; in particular the fuselage produces a
moment of the opposite sign. The latter is the result of a sideways lift on it which has a centre of
pressure near the nose, similar to that produced in the pitching case. The result is that the yawing
moment due to sideslip derivative for the aircraft as a whole is rather less than the fin contribution.

We now consider some further effects of sideslip, namely those due to dihedral and sweepback on the
wings. Figure 2.5(a) shows the rear view of an aircraft having dihedral in a sideslip. Resolving the
relative air velocity into the normal to the starboard wing mean plane gives an upward velocity
component of vF, where 1" is the dihedral angle, positive as shown and assumed small. The result is an
increase in incidence of amount vFIVc, which increases the lift on the wing and gives a negative rolling
moment. The opposite effect occurs on the other wing, which again produces a negative rolling

moment.
v
Yy
(@) 2 ftriangle of
relative velocities
(b)
lift curve slope
;';' sweepback
AA=pf angle

(c)

Fig.2.6 Determination of dihedral effect: (a) velocities in rear view, (b) velocities in plan view,
(c) variation of lift curve slope with sweepback angle

Figure 6.7(b) shows an aircraft with sweptback wings in a sideslip. We see that the sweepback angle is
decreased by ~ on the starboard wing and increased by ~ on the port wing. Now the lift curve slope of

wings decreases as the sweep is increased. Assuming that this wing is at some incidence, the lift on the
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starboard side therefore increases with sideslip giving a negative rolling moment. The opposite occurs
on the port side, adding to the magnitude of the rolling moment.

There are still more mechanisms for producing rolling moment on an aircraft in a sideslip; we will
discuss only one more, that due to wing position on the fuselage. In a sideslip the airflow past the
fuselage can be thought of as composed of two flows, the flow in un side slipped flight an a flow from
one side of the fuselage to the other, the ‘cross flow'. Figure 2.8(a) shows the ideal flow past a circular
cylinder, which resembles the cross flow expected past a circular fuselage. Figure 2.8(b) shows the
cross-section of a high wing aircraft in the region of the wing. Near the point A the air is deflected
upwards relative to the wing, increasing the incidence locally; similarly the incidence is decreased near
B. The resulting local changes to the wing lift gives a negative rolling moment from both wings. We
shall see later that the rolling moment due to sideslip effect is a stabilizing one provided that it is not
too large. The effects on aircraft layout can be seen in actual designs. With unswept wings, low wing
layouts usually have noticeable dihedral whilst high wing ones little or none. Highly swept, low wing
aircraft have little dihedral whilst high wing ones often have negative dihedral angle, known as
anhedral'. The three effects discussed above all depend on changes of lift distribution over the span of
the wing, and so are accompanied by spanwise changes in the trailing vortex drag. The result in cases
of dihedral and sweep is a contribution to yawing moment due to sideslip in the same sense as the fin
contribution. In the case of dihedral the effect is usually small, but for sweep the effect is proportional
to C~, and so can become important at high incidence. We write the sideforce, rolling and yawing

moments due to sideslip for the whole aircraft using derivatives thus:

IARE Aircraft Stability and Control Page 61

Source from Yechout, T.R. “Introduction to Aircraft Flight Mechanics”, AIAA education
Series, 2003




--""_;'_...._-]Vr

Ve
L
p
_...---"""—:_\; v
y o
. Qy

@ Z  ftriangle of
relative velocities

(b)

lift curve slope

S

L sweepback
© AA=p  angle

Fig 2.7 Determination of dihedral effect: (a) velocities in rear view, (b) velocities in plan view,
(c) variation of lift curve slope with sweepback angle
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Fig.2.8. Effect of wing position on Lv: (a) ideal flow past a circular cylinder, (b) forces produced by
crossflow

Effect of rate of yaw
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In any turn, in order for the aircraft axis to be continually tangential to the path of the cg, the aircraft
must have an angular velocity in yaw, and there are other cases in which the aircraft is yawing. Let us
consider the effect of a small rate of yaw on an aircraft flying in a straight line and wings level, ,i.e.
without the extra complications of a turn, as shown in figure 6.5. As a consequence of the yaw rate r,
the fin has a sideways velocity of rl~. Then considering the triangle of relative air velocities, the fin has

an incidence of o~ = rIFIVc, which gives rise to a sideforce of

Yoo =4 PVeSear -0 =4 pV,Spleay

This in turn gives a yawing moment which opposes the yawing motion and which we write in the form

Nﬁn =Nr,ﬁh'r

L3

N, =—4pV.Selza)

may happen consider again the aircraft of figure 2.9. The starboard wing tip is moving backwards
relative to the cg and so its nett velocity is reduced, and hence also is the lift. This gives rise to a
positive rolling moment; the reverse effect appears on the port wing and so this contributes to the
rolling moment in the same sense. Other parts of the aircraft also contribute to this effect. We write the

sideforce, rolling and yawing moments due to rate of yaw using derivatives thus:

-]

Y=Y.-r
L=E,,-r
N=ﬂr',-r

w

-

In fact the sideforce due to yaw rate is very small and we frequently neglect it
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Fig. 2.9. Effect of rate of yaw: (a) velocities in plan view, (b) lift forces
Trimmed lateral manoeuvres

In this section we consider the aileron and rudder angles required to perform two simple manoeuvres,
the correctly banked turn and the straight sideslip. Strictly speaking the angles found are the changes
from straight and level flight, since even in that condition an aircraft may need aileron or rudder angles
to counter power effects or other asymmetries. It is cumbersome and unnecessary to use the superscript

in this section since it is evident that all the terms in the equations are dimensional.
-The correctly banked turn

Consider again the aircraft shown in figure 2.10, which is performing a turn at bank angle phi to the
vertical.

Vl
Lsing=m—
¢ R

Lsin ¢=mV,.@

where to is the angular velocity of the aircraft about the vertical; we have again neglected the side force
generated by rate of yaw. We need to resolve this velocity along the z-axis to find the rate of yaw and
hence express the aerodynamic effects of yaw rate. Considering the triangle of angular velocities

shown in figure 2.10 we find
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Y mg

Fig 2.10 illustration of bank angle

r=wcos ¢ (6.9)
We also find a rate of pitch, g = r sin ¢. This means that there will be a change in the trim in
pitch: see Section 5.5. From (3.46) we have L cos ¢ = mg, then using (6.9) to eliminate cos ¢
in this we have
Lriw=mg
and using this to eliminate @ from (6.8) gives
r= (g sin ¢)/V, (6.10)
Since the flight condition is a steady one the total moments about the roll and yaw axes must

be zero (see for comparison Section 5.2). Then adding the moments due to yaw rate and
control action we have
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Lr+ L+ L{=0 (6.11)
Nr+ N&+ NSL=0

Solving these simultaneous equations for & and { in terms of r and then substituting r from
(6.10) gives

r _ gsing N
'5:3(!"’”‘ - LfN’)_ﬂua (LrN; LCN,) (6.12)
r _gsing _
g=E(LCN, - LN,)= VA (LN, = LN) (6.13)
where
A:Lch _LgN; (6'14}

These expressions are dominated by the direct effects of the controls and the rate of yaw
derivatives and can be approximated as

L-r N.r
£ A and { N, (6.15)

This shows that the aileron is primarily used to balance the rolling moment due to yaw rate and
the rudder to balance the yawing moment, as would be expected. Once the aircraft has achieved
a steady turn the aileron and rudder angles required are usually quite small. Having found these
angles it is possible to find the stick forces from equations of the form (4.17) and (5.54).

-Steady straight sideslip

Consider the aircraft shown in figure 2.11, which is performing a steady straight sideslip, with sideslip
velocity v. Resolving forces along the Y direction and neglecting any sideforces generated by the
control surfaces w.

/"
Y mg

Fig 2.11 Forces in steady state slip
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Y,.v + mgsin ¢=0 (6.16)

The rolling and yawing moments due to sideslip and from the controls must be in
balance giving

Lov+ L&+ L-{=0 }

Nyv+N&+ N-§=0 6.17)
Solving these simultaneously for & and {'in terms of v gives
v
§=—(LN, - L;N,) (6.18)
v
¢ =K(L§N,, - L,N;) (6.19)

where A is given by (6.14) and the roll angle can be found from (6.16). Again these expres-
sions are dominated by the direct effects of the control angles and the effects of sideslip and
can be approximated as

=LY e =N
§= L = N, (6.20)

This shows that in this case the aileron is primarily used to balance the rolling moment due to
sideslip and the rudder to balance the yawing moment, as would be expected. The aileron and
rudder angles increase rapidly with sideslip angle, whilst the roll angle increases less rapidly.
Figure 6.7 shows a sketch of typical roll, aileron and rudder angles as a function of sideslip angle.

XY

¢
¢
\F
3

Fig. 2.12 variation of roll angle, aileron angle and rudder angle with side slip angle
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-Minimum control speeds

If an engine fails on'a multi-engined aircraft then the pilot must be able to manoeuvre the aircraft. At
low speeds the dynamic pressure may not be sufficient to produce sufficient yawing moment from the
rudder. There is therefore a minimum speed at which the pilot can maintain straight flight. The
minimum control speed in the air, VMc,, is defined in the airworthiness requirements roughly as the
airspeed at which, when the critical engine is made inoperative, it is possible to maintain control of the
aircraft in straight flight with a bank angle of not more than 5 ° . This has to be demonstrated by flight
test when the aircraft is built. The rudder pedal force may not exceed 150 Ib (= 667 N) and the change
in heading may not be more than 20 °. Also VMca may not exceed 1.2Vs~. In designing an aircraft the
designer will choose a value for VMc, with reference to the desired take-off performance and use it as
one factor in the design of the fin and rudder. At an assumed value for VMca in the calculations, the
yawing moment from the remaining engines will balance that from the fully deflected rudder. The
minimum control speed on the ground, VMcg, is similarly defined; no use of a steerable nose-wheel

may be assumed.

Static Stability

In this section we consider what preliminary insights we may obtain from applying the ideas of static
stability. Consider an aircraft disturbed in sideslip as in figure 6.2. The yawing moment produced by
the fin tends to turn the aircraft into the direction of the resultant velocity, i.e. it tends to reduce the

sideslip. Therefore this is a stable response and is known as "directional’ or "weathercock"' stability.

The condition for this is then

N,>0

propellers ahead of the cg are destabilizing. We note that a rolling moment will also be generated
through the derivative Lv so that the aircraft will be given both roll and yaw accelerations. Now let us
consider an aircraft which has been given a small angle of rotation in roll around its velocity vector. No
restoring moment in roll will appear because no surface of the aircraft has changed its incidence to the
flow. However, there is a component of the weight along the Y-axis which will produce a sideslip; this
in turn will produce a rolling moment through the derivative Lv. Positive roll angle, as shown in figure
3.9, will produce a positive sideslip velocity, and so a negative rolling moment is required for static

stability. This effect is known as 'static lateral stability' and the condition for it to be positive is

L, <0
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stability into play. We see therefore that these static stability conditions are coupled and, although
necessary, are not sufficient and only analysis of the dynamic stability gives the complete picture.

As in the case of static stability in pitch the measurement of the trim curves indicates the static
stability. The procedure is to fly the aircraft in a series of straight sideslips, and measure the sideslip,
roll, aileron and rudder angles. Then, assuming that the direct effects of the aileron and rudder are in
the usual senses, (6.20) shows that for positive static lateral stability aileron angle decreases with
sideslip. For positive directional stability rudder angle increases with sideslip. Figure 6.7 shows the
aileron, rudder and roll angles in a sideslip for an aircraft with positive directional and lateral static
stability. If stick and rudder forces are also measured then these can be used to infer the static
stabilities, stick free. These are positive when the forces are in the direction to produce these stick and
rudder movements. The airworthiness requirements ask that an aircraft is laterally stable as discussed
above and require the trim curves and the rudder pedal force curve not to have any reversal of slope up
to the maximum angles available or up to a pedal force of 180 Ib (= 800 N).

Problem

A twin-engine aircraft is flying at low altitude when one engine fails. Find the slowest
speed at which it can fly steadily without sideslip. Assume that the thrust of the
remaining engine just balances the drag and that engine thrust is independent of speed.
The maximum rudder angle is 30°, the rudder lift curve slope is 0.55 and the rudder
moment arm about the cgis 16 m. Other information is as follows: mass = 200 000 kg,
wing area = 300 m?, fin area = 42 m?, the engines are 5 m from the centreline, Cp, =
0.036 + 0.062C31. (A}

Aircraft component contribution to lateral and directional stability

-Lateral stability

An airplane is said to possess lateral static stability if after undergoing a disturbance that rolls it to
some bank angle g [Greek letter theta], it generates forces and moments that tend to reduce the

bank angle and restore the equilibrium flight condition.

Dihedral is often used as a means to improve lateral stability. Figure 144(a) shows a headon view

of an airplane that has dihedral where the wings are turned up at some dihedral angle to the
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https://history.nasa.gov/SP-367/chapt9.htm#f144

horizontal. Under the condition shown, in straight and level flight, the lift produced by both wings
just equals the weight. Now, assume that a disturbance causes one wing to drop relative to the
other as shown in figure 144(b). The lift vector rotates and there is a component of the weight
acting inward which causes the airplane to move sideways in this direction. The airplane is said to

sideslip and...

Sideslip
angle

Airplane is disturbed
to some sideslip angle

Fuselage side force
produces destabilizing
moment

Fin and rudder force
produces stabilizing
moment

Fig.2.13 Directional stability moments.
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UNIT 11

Axes and notation

We have already introduced some of the notation needed in previous chapters; however, a complete
statement of the basic notation will be made at this point and is shown in figure 3.1.

x, XU
\

p.L

zZW

Fig.3.1 Stability axes and velocities and forces along them, angular velocities and moments around
Them

We place a set of right-handed orthogonal axes with the origin at the cg. The Ox axis points roughly in
the forward direction, Oy at fight angles to the plane of symmetry and towards the starboard wing tip.
The z-axis points roughly downwards and completes a right-handed set. For the time being the freedom
to choose the precise direction of the x-axis is left to be decided to suit the problem in hand. There are
at least two natural choices: « to have the x-axis fixed initially in the direction of undisturbed flight -
such axes are known as ‘wind axes'; « aircraft normally have a principal axis of inertia lying roughly in
the flight direction — this is sometimes a convenient direction to take as the x-axis.

Now let

* V be the velocity of the aircraft cg, with components U, V and W along Ox, Oy and Oz;

* A be the angular velocity of the aircraft, with components p, q and r about Ox, Oy and Oz;

* F be the force on the aircraft, with components X, Y and Z along Ox, Oy and Oz;

* Q be the moment on the aircraft about the cg, with components L, M and N along OX, Oy

and Oz.

The positive sense of the velocities and forces is in the direction of the axes and that of the angular

velocities and moments is that of a right-hand screw advancing along the direction of the axes.
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Orientation

Three rotations about non-parallel axes will move one set of axes so as to be parallel with another set;
however, there are many possible choices of combinations of rotations about the axes and the order to
take them in. We choose one attributed to Euler as follows: take clockwise rotations gt, 0 and ~ about
the Oz, Oy and Ox axes where rotation takes place about that position of the axis to which previous
rotations have brought it. We will rotate a set of axes parallel to the axes in the undisturbed state into
parallelism with the position of the axes at some time t after the start of the disturbance. The angles of
rotation required then define the orientation of the aircraft. Figure 3.2 shows the procedure.

Yo

Z0.Z4

Fig:2.2 Definition of Euler angles and unit vectors along various axes

Oxyz. To keep track of the directions of the axes choose unit vectors io, Jo, ko; il, j~, kI; i2, J2, k2 and
i, J, k along the axes, respectively. We now need the relations between these unit vectors. Consider the
first rotation gt about the Ozo axis; figure 8.3 shows the view looking along that axis. In the figure we
have dropped perpendiculars PN and QT from the ends of the unit vectors io, Jo onto the Ox~ and O),1

axes. Then from the triangles formed we see
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g s
II

0 $+ﬁ? =i, cosy — j;siny

-jI cosy + i, siny

since the perpendiculars PN and QT are parallel to -Oy~ and Ox~.Each rotation looks like any other
when viewed along its axis of rotation, allowing for the change of labels on the axes. Hence for the
rotation 0 about the Oy~ axis,

i, =k,sin@ + i, cos@
=i

k, =k, cos® — i,sinf@

Fig 3.3 Relation for one rotation
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and for the rotation ¢ about the Ox, axis,

i, =1
ji = jcos¢ — ksing
k, = jsing + kcos¢

Then on substituting back we find

i, =icosy -cos@ + Jcosy sin@-sing — siny cosg)
+ k(cosy -sin@-cos¢ + siny -sin¢)
jo =isiny -cos® + Ksiny -sinB sin¢g + cosy -cos¢)
+ k(siny -sinf . cos¢ — cosy -sin¢)
ko, =—isin@ + jcos@-sin¢ + kcos8-cos¢

L

which are the required relationships. The inverse relations are also needed; they are
a similar manner and are

i=ijcosy-cosf + jysiny-cos@ — kysinf
j=ig(cosy-sin@-sing — siny -cos¢)

+ jo(siny -sin@-sing + cosy -cos¢) + k,cos@ sing
k=i, (siny-sing + cosy :sinf-cos@)

+ Jo(siny -sinB-cos¢p — cosy -sin@) + k,cos@-cos¢

v

Relations between the rates of change of angles

Suppose we find the orientation, or Euler, angles at time t and at time t + &. Then by the usual process
of taking differences, dividing by 6t and proceeding to the limit we can define V, 0 and ¢~. The vector
sum of these must be the angular velocity vector of the aircraft, A. They. are, however, measured about
non-orthogonal axes; because ~ is a rotation about Ox2, then ~ is a vector along that axis. Similarly 0 is

along Oy~ and ~,along Ozo. Hence we can express A as
A= 'j'iz + éj, + Yk,
then the appropriate substitutions from the previous section give
A = ¢i + 6(j cos ¢ — k sin ¢) + y(—1i sin @ + j cos B.sin ¢ + k cos O.cos ¢)

These then are the relations between the rates of change of the orientation angles and the components
of angular velocity and, as they are linear, they can be solved for ~ 0 and ~ in terms of p, g and r. When
we have solved a problem these may be integrated to find the orientation of the aircraft during the

disturbance.
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The aircraft angular velocity can also be expressed as
A=pit+gqgj+rk

Then equating the components of A we find

p=¢ — ysin®
q=6‘f._':os¢ + Y cosO-sing
r=-0sing + ¢cosf-cos¢

Development of the equations

At this stage we need to define the initial condition of flight as different initial conditions lead
to slightly different forms of the final equations. The standard choice is that of a straight
steady unsideslipped climb at speed V, with the x-axis at an angle ©, to the horizontal. In
straight steady flight we have

A=A=vy=V=0 (8.9)
with the result that the equations of motion reduce to
F=F, +F, =0 (8.10)

and
Q.=0 (8.11)

This flight condition will be referred to as the ‘datum flight condition’ and the values of
quantities in this condition are indicated by the suffix ‘e’.

-Components of the weight

We now consider the components of the weight along the various axes. Figure 8.4 shows the
aircraft in the datum condition, with the x-axis at an angle ¢, to the direction of flight. From
the figure we see that the weight vector is initially

F, =mg[~iysin®, + kycos0,] (8.12)

We substitute for i, and k, from (8.6) to obtain the weight vector in terms of i, j and k, that is
we find its components along the disturbed aircraft axes. Then
F, = mg[-*{icosur -cos8 + j(cosy -sinB-sin¢g — siny -cos¢)
+ k(cosy -sin 8- cos¢ + siny -sin9)}sin©,
+ {~isin® + jcos@-sing + kcos@-cosg}cos®, |
=Xi+Yj+ Zk
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horizontal

F4
Fig. 8.4 Datum flight condition ° g

Then equating components we have

X, = —m‘g[msw-t:osﬁi-a-..inee + sin8-cos@,]
Y, = mg[{sinw'cosop - cosy -sin@.sing}sin®, + eosﬂ-sinw-cosB,] (8.13)

Z, =mg[—{cosv-sin8-cos¢ + siny -sing}sin®, + cosO-cosqb.cosG,]

We write the aerodynamic forces in the datum condition as X, , ¥, and Z, . Then the equations
of linear motion are

—mgsin®, + X, =0
L. =0 (8.14)
mgcos®, + Z, =0

Small Perturbation

We come now to the first and most far-reaching of the simplifying assumptions; it is that the
aircraft is only disturbed by small amounts from the initial steady state. From figure 8.4 we
see that the initial flight velocity, V,, can be resolved along the initial aircraft axes into U, and

W, where

U.,=V,cosa,and W, =V, sin a, (8.15)
We then write
U=U, +u
V= v (8.16)
W=W +w

The assumption is then specifically that

e u, v and w are much less than the speed V,;
e p, g and r are much less than V./l where [ is a characteristic length of the aircraft. This
implies, for instance, that the helix angle of the rolling wing discussed in Section 7.2.1

is small;
e Y, @and ¢ are small.
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--Stability derivatives

We come now 1o the first and most far-reaching of the simplifying assumptions; it is that thef
aircraft is only disturbed by small amounts from the initial steady state. From figure 8.4 we-
see that the initial flight velocity, V,, can be resolved along the initial aircraft axes into U, and

W, where
)

U.,=V,.cos a,and W, =V, sin o, (8.15)
We then write
U = Ue + u )
V = v (8.16)
W=W +w

The assumption is then specifically that

e u, v and w are much less than the speed V;

e p, g and r are much less than V./l where [ is a characteristic length of the aircraft. This
implies, for instance, that the helix angle of the rolling wing discussed in Section 7.2.1
is small;

e Y, Oand ¢ are small.

These quantities are known as ‘stability derivatives’. The derivatives used in Chapters 6 and
7 are quasi-static versions of these stability derivatives; as before the superscript ord, ‘°’, is to
indicate that it i a dimencinnal ar ‘ardinarv’ anantitu

To improve the correlation between theory and experiment, it has been found necessary to
add derivatives with respect to linear acgelerations, in particular the vertical acceleration w.
We will add only the two derivatives, Z; and M,, but it is a simple matter to add more if
required. If the aircraft were in a flight condition such that displacements from the datum flight
path generated forces or moments then derivatives due to this source would be required.
Determining these displacernents is dealt with in Section 8.6.2.1. Examples of such cases are
flight near the ground or in the flow field of another aircraft.
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--Linearized equations of motion

X, + X, =m(i + gW,)
o +Y=m(v+rU, — pW,)

Z, + Z, =m(w — qU.,)

L =h - (8.20)
M, = hz
N' = kj ]
X, + X, =m(i + gW,) ) sht become
K+ Y, =m(v+rU, ~— pW,)
Z, + Z, =m(w — qU,)
L =h, (8.20) (8.21)
M, =h,
N’ =I€'J J
g1=gcos©,and g, =g sin O, (8.22)

Another drastic simplification takes place with the relation between the rates of change of
orientation angles and the components of angular velocity (8.8). These become

p=9
=6 (8.23)
reg

Dimensional stability equations

We can now assemble the equations for the stability. Starting from (8.20) we substitute for
the components of momentum from (8.24), the components of weight from (8.21) and the
aerodynamic terms from (8.17) and similar expressions with (8.25) substituted. We finally
subtract the equations of motion in the datum case, (8.14). The results are

miu + qW,)=-mg,f + j(uu + jl'ww + ).{qq + if(!) (8.26)

i+, = pW)=nigg + gy)+ Yyt Tp+ Ere b 620
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m(w = qU,)=-mg,0 + i,u + 2,,,w t é,,w t 2qq + i(f (8.28)

L= L=Ly+ Lp+ L+ L) 829
Lg=Myu+ My + M + Mg + M) 830
L= 1p=Ny 4 Np+ N+ N 31

In these equations p, g and r are related to y;, §and 9by (8.23).

There are a number of observations to be made about these equations. First, we note that
(8.26), (8.28) and (8.30) are independent of (8.27), (8.29) and (8.31); this is a result of the
assumptions of small perturbations and of symmetry. The first three involving u, w and ¢
comprise motion entirely in the plane of symmetry, and are known as the ‘longitudinal stabil-
ity equations', The second set involving v, p and r comprise motions out of the plane and are
known as the ‘lateral stability equations’. They are sets of three simultaneous linear differ-
ential equations with time as the independent variable. Whilst normally a mechanical system
with three degrees of freedom would be expected to result in three second-order equations,
some of these equations are only of first order.

These equations cannot be regarded as sufficient to deal with all possible circumstances. In
special cases additional stability derivatives, dynamic terms o terms expressing the effects of
unconventional controls may be needed. In some cases it may not be justified to assume that
changes in height are small and changes in density may have to be allowed for. This will

require a further equation to accommodate the extra freedom and corresponding stability
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Concise stability equations

In this case we simply divide through by the mass or inertia. We need to define concise
derivatives and terms such as

(8.41)

@
X, ===t n, ==
n

The definitions of all the concise derivatives include a change of sign as almost all derivatives
are negative. We also need to define other quantities such as x(t) = X()/m and so on for the
other derivatives, also e, = =1, /], and e, = =1, I,. Our equations (8.26}8.31) then become

it g+ kot xwt (5, + W)g= ~x(0) (8.42)
ogd gy Tyt O, - Wp kg U= 84
Wt g0+ gt g, Wt g0+ (2 - U,g= =200 (8.44)
preitlytlptir==it) (845

G+ mutmwtm+mgs 0 (8.46)

Pt ep+ny+nptnr=-n) (847)

In some investigations it is necessary to work in terms of ordinary time, for instance if a real
pilot is involved such as a in a flight simulator. No further manipulation of the equations then

appears possible.
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3.3 Aircraft Axis Systems

In this chapter we will concern ourselves with three axis systems. These include the body axis system
fixed to the aircraft, the Earth axis system, which we will assume to be an inertial axis system fixed to
the Earth, and the stability axis system, which is defined with respect to the relative wind. Each of
these systems is useful in that they provide a convenient system for defining a particular vector, such
as, the aerodynamic forces, the weight vector, or the thrust vector.

3.3.1 Body Axis System

The body axis system is fixed to the aircraft with its origin at the aircraft’s center of gravity. The x axis
is defined out the nose of the aircraft along some reference line. The reference line may be chosen to be
the chord line of the aircraft or may be along the floor of the aircraft, as is often the case in large
transports. The y axis is defined out the right wing of the aircraft, and the z axis is defined as down
through the bottom of the aircraft in accordance with the right-hand rule, as shown in Fig. 3.1. The
pilot sits in the body axis system, making it a very useful reference frame. Additionally, it is relatively

easy to determine the moments and products of inertia in the body axis system because it is fixed to the aircraft.

L

Fig 3.1 Body axis system

Earth Axis System

The Earth axis system is fixed to the Earth with its z axis pointing to the center of the Earth. The x axis
and y axis are orthogonal and lie in the local horizontal plane with the origin at the aircraft center of
gravity. Often, the x axis is defined as North and the y axis defined as East. The Earth axis system is
assumed to be an inertial axis system for aircraft problems. This is important because Newton’s 2nd
law is valid only in an inertial system. While this assumption is not totally accurate, it works well for
aircraft problems where the aircraft rotation rates are large compared to the rotation rate of the Earth.

Stability Axis System
The stability axis system is rotated relative to the body axis system through the angle of attack. This

means that the stability x axis points in the direction of the projection of the relative wind onto the xz
plane of the aircraft. The origin of the stability axis system is also at the aircraft center of gravity. The

y axis is out the right wing and coincident with the y axis of the body axis system. The z axis is

IARE Aircraft Stability and Control Page 81

Source from Yechout, T.R. “Introduction to Aircraft Flight Mechanics”, AIAA education
Series, 2003




orthogonal and points downward in accordance with the right-hand rule. This is illustrated in Fig. 3.2.

The stability axis system is particularly useful in defining the aerodynamic forces of lift and drag.

¥p, ¥

Fig. 3.2 Stability axis system

Coordinate Transformations

As stated previously, it is convenient to express certain vectors in a particular coordinate system. For
example, the weight vector of the aircraft is conveniently represented in the Earth axis system where
there is only a component in the positive z direction because the vector acts toward the center of the
Earth, that is,

0 0
FWcightEﬂi = PGty G 0 =10
W 1 ME | garth

3.1
The aerodynamic forces are conveniently displayed in the stability axis, where drag acts in the negative
x direction and lift acts in the negative z axis, that is,
-D
F Amo = F,-f =|F 4,

—L y
Stability 3.2

Likewise, the thrust vector can easily be expressed in the body axis as

) ) T cos(¢y)
Frimg = Fr = 0

—Tsin(¢p;)

Body 3.3

where fT is the angle between the x-body axis and the thrust vector, T. While these equations are
conveniently displayed in a particular axis system, they must be all transformed into the same axis
system before they can be summed in the equations of motion. As a result, it is very important to

understand how to transform a vector from one axis system to another.
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Earth Axis to Body Axis Transformation

Transforming a vector from the Earth axis system to the body axis system requires three consecutive
rotations about the z axis, y axis, and x axis, respectively. In flight mechanics, the Euler angles are
used to rotate the ‘‘vehicle carried’’ Earth axis system into coincidence with the body axis system. The
Euler angles are expressed as yaw (C), pitch (), and roll (F). Euler angles are very useful in
describing the orientation of the aircraft with respect to inertial space. The proper order or rotation is
illustrated in Fig. 4.3. The yaw angle, C, is defined as the angle between the projection of the x body
axis onto the horizontal plane and the x axis of the Earth axis system With the Earth x axis defined as
North, the yaw angle is the same as the vehicle heading angle. The pitch angle, Y, is the angle
measured in a vertical plane between the x-body axis and the horizontal plane. The roll angle, F, is
the angle measured in the yz plane of the vehicle body axis system, between the y-body axis and the

horizontal plane. This is the same as the bank angle.

Earth Axis b LR = A Body Msis
System Syesfem

Fig. 4.3 Earth tov body ransformaton.

for a given W and & amd is a measure of the motation about the x axis to put
the aircraft m the desired positton from a wing's hoosontal conditicon. The

accepted hmits on the Euler angles are

0 = ¥ = 360 deg
— o deg = & = 90 deg
=180 deg = @ = 180 deg

The mportance of the sequence of the Eanler angle rotations cammaot be owverem-
phasized If the sequence is performed in oa different order than o, @, and b,
the final result will be mcorrect. The folloewing illustrates the tmnsformation of
a vector, Fg, in the Earth axis system into the body axis swystem, where

Fg = Xgig + Yg je + Zghkg (4.4}

and iz, g, and i'.E' are the unit vectors in the Earth axis syvstem. Therefore,

_ XE
= | Y& (4.5)
Z-E' Earth

If we rotate through the vaw angle, . aboat the z-Earth axis, kg, we end up in
sormee imtermediate axis svstem ¢, p', and &' (See Fig., 44
The wvector in the mtemmediate axis system (8, 7. and &) is:

F' = X7 + ¥j§ +Z'K (4.6)
where
X' = Xgcos¥ 4 Fgsin¥
V' = —Xp sin"¥ 4+ ¥ oosP (2.7
2 = Fg
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Fig. 4.4 Rotation throngh Y.

50
X cos¥  sm%¥ 0 Xg
Y | = | =sm%¥ cos¥ 0 ¥r (4.8)
Z 1] L] | Zp
Ri('¥)
F = R,(¥WF; (4.9)
We will now mlate this mtermediate vector, F" through so PLtLh angle, @,

to some other intermediate axis system, 1", _,F” and k" as shown in Fig. 4.5

; out of page)

| S

¥

Fig. 45 Rotatdon through &,
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The vector m the mtermmediate axis 15

F'=X"{" 4+ ¥ 42" 4.10)
whens
X' =X cos® =7 sin®
F' =¥ “.11)
" =X s5in® + Z' cos @
X™ cos® 0 =smE X
e | = 0 | 0 ¥ 4.12)
2 sin= 0 cos@ 2
Ry(B)
ml
F'= R (@)WF = R, (@R, (W)F, 4.13)

Finally we will rotate the vector, F""', through some roll angle, @, into the body
axis gystemn, €, f, and k as shown in Fig 4.6

& rsimg ﬂ::-_r_

7 = 4, in 1o page)

Fig. 446 Rotaton throogh o
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The vector in the body axis system is

Fy = Xgi+ Yy j+ Zpk 4.14)
when
Xy = X" (i direction)
¥g = Y eos® 4 Z"sind ( § direction) 4.15)
Zy = =Y"sin® + Z" cos®  (k direction)
Xg 1 0 0 X
¥e |l=|0 cos® sind || ¥ (4.16)
Zy 0 =sm® cosd z
R,(®)
!.“J-I
Fy =R (D)F' = R (D)RO)R,(¥)Fy 4.17)

Therefore, any vector in the Earth axis system can be transformed into the
body axis system using the following transformation.

Fy = R\(©)R:(O)Ry('¥)Fg (4.18)
This transformation is very useful in tmnsforming the weight vector of an

aircraft expressed in the Earth axis mto the body axis svstem. As shown earlier
in Eq. (4.1), the aircraft’s weight vector in the Earth axis system is

~ ~ 0 0
Foavy,, =Fg=| 0| =|o0 4.19)
L P ME | paan

The vector in the body axis system is essily found using the transformation
from Eq. (4.18) as shown in Eq. (4.20).

Formin, =
1 ] 0 cos® 0 —sn@ cos¥  sn¥ 0 0
0 cos® smd L] 1 0 =sm¥ cos¥ 0O 0
0 —snd cosd sn@ 0 cos® 0 0 1 mg |-
4.20)
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This vields the following weight vector in the body axis system:

~ —m g sin &
Forginy, = | mgsinPcos© 4.21)

myg cos Deos @ &

In going from the body axis system to the Earth axis system, we go through
=il then =&, and then =¥, S0 the tmnsformation 1s

Fo = Ry — )Ry ( —O)R, (— D) Fp 4.22)
For these orthonormal trans formation matrices

Ry(=®) = R (D)
R,(—8®) = RI(®) @.23)
Ry(—'¥) = R{(¥)

where the superscnpt T indicates the transposition of the matrix
Therefore,

Fe = RI(P)RI(@)R] (D )Fy (4.24)

This is convenient for transforming the acceleration or velocity vector in the
body axis system into a vector in the Earth axis system, as might be measured
by a mdar site tracking the aircraft.

4.2.2 Stability Axis to Body Axis Transformation

It is also important to transform a vector in the stability axis system into the
body axis system. This is wseful in transforming the asrodynamic forces from
thar convenient axis system, Eq. (4.7), into the body axis system. This is
accomplished by mtating the stability axis system thmough a positive angle of
attack, as shown in Fig. 4.7.

Body Axis o Stabality
Bystem * Axis Bystem

Fig. 4.7 Stability to body axis transformathon
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The transformation from stability to body is simply a rotation about the w
axis thmugh the angle «, or an & (x) tansformation, namely,

F, e = H‘z{-:t]-ﬁ'., —— (4.25)
F,.T s 0 —smo =D
F, = 0 1 0 Fa, (4.26)
FAJ Body sma 0 ocosa = Sability

Raf)
Therefore,

F:'x, = =[leosa 4= Lsin

F.-IH = F.-l:ﬁ (4.27)

F, ==Dsma— Leosa

ig

4.2.3 Summary of Axes Transformation

Fipure 48 provides a block diagram showing the complete set of trans for-
mations from the Earth axis system to the stability axis system. As already
stated, the armow shows a positive tmnsformation fom one axis system to
another.

4.3 Aircraft Force Equations

This section develops the three aircaft force eguations. The force equations
consist of aircraft response (in temrms of accelerations) on the lefi-hand side of
the equations, and the apphed forces on the nght-hand side of the equations.
Mewton's 2nd law states that the time rate of change of linear momentum is
equal to the summation of the applied forces acting on the aircraft’s center of

gravity:

d{”ﬁ] —F 428
[ dt Tme=riial { . }

It is extremely mmporiant to undenstand that Newton's 2nd law is only valid in
an inertial reference fame. An inertial reference fmme is an axis system that is

Earth Axis - B, ¢ By MAuxis cx Slabality
BysbEm Sv=icm Axis Bystem

Fig. 4.8 Earth axk system to stability axi system tra nsformation
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fixed in space with no melative motion. For the purposes of analzing aircraft,
it will be assumed that the Earth axis system is an inertial reference frame,
even though it does have rotation. It is assumed that the rotation rate of the
Earth is small compared to the rotation rates of the aircrafl.

4.3.1 Aircraft Response

In developing the response side of the aircraft force equations, several addi-
tional assumptions will be made. Fist, it is assumed that the amcraft is a nigid
body. This assumes that the different parts of the aircmft are not moving with
respect to each other. The mass of the aircraft is also assumed to be constant,
which 18 reasonable over a melatively shont duration of time. This assumption

allows Newton's 2nd law to be mewritten as
i F _
m[ﬂ} — M = F (4.29)

dt Tresrtiall

While Mewtons 2nd lew is only valid with mspect to an inertial meference
frame, the equations can be expressed in the vehide body axis system. IF the
equations arme expressed in the body axis system, the fact that the system is
mtating with respect to an inertial reference frame must be taken into account.
This is accomplished using

(Binertiat fgoy = I_"Ba.d}- + g, I_'r'Elnd}- (4.30)
The velocity vector in the body axis system, FB:.:I}-- 15 defined as
Fooay = Ui+ Fj + Wk 4.31)

where U, V', and W are the velocities in the x, p, and = body axes, respectvely.
The aircraft angular rate in the body axis system, E.lw},, s defined as

iy, = Pi+ Of + Rk (4.32)

where P, (0, and R are the roll, pitch, and yvaw rates, respectively, expressed n
the body axis. Thenefore,

v i j ok
(Fpeia gy = | ¥ +P O R| 4.33)
W Bady o vV w Dody
This results n
U+ QW — RV
(Fprtia oy = | ¥+ RU = PW 4.34)
W 4+ PV = QU Body
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Multiplying the inertial acceleration in the body axis system by the mass of the
aircraft yields the three force equations

U+ QW —RV F, _
m| V+RU=PW | =|F | =Fuug 4.35)
WPV —0U |pe LFr lp

Therefore,

miU + QW = RV) =F,
m(¥F + R — PW) = F, 4.36)

m(W + PV = QU) = F,

4.3.2 Applied Forces

The previous section developed the left-hand side, or response side, of the
force equations. The right-hand side of each equation consists of the applied
forces that act on the aircmfl. They consist of the gravity forces, the aerody-
mamic forces, and the thrust forces.

m(U + QW —RV)=Fg + F, +Fy,
m(¥V + RU —PW)=Fg +F, +Fy 4.37)
m(W + PV — QU) = Fg + F,_+ Fr.

Because the lefl-hand sides of the equations were developed in the body axis
systemn, the right-hand side must also be in the body axis system Therefore,
each of the forces must be represented m the body axis system for the previous
equations to be valid. The grvity forces, asrodynamic forces, and thrust forces
wene previously determined in the body axis system in Secs. 422 432 and
4.2, mespectively. Therefore, the three force equations in the body axis systemn
ars

m{in"+ OF = RV) = —mgsin® + (=Dcos A 4+ L sin A) 4+ Tcosdy
m(V + RU — PW) = mgsin® cos @ + F, + Fr,

W 4 PF — OU) = mgeos®eos @ 4 (=D sin A = LeosA) = Tsin Dy
(£.38)

4.4 Moment Equations
The threes moment equations are determined by applving Newton'’s 2nd Law
in a manner similar to the three force equations. Mewton's 2nd law states that
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the time rate of change in the angular momentum of the aircmft s equal to the
applied moments acting on the aircraft, namely,

— = M 4.39)
Iidir’]'lm-ﬁn.l

H is the angular momentum of the aircmft and s defined as
H =7 = (mF) (4.40)

Equation (4.39) will be wsed, along with some simplifying assumptions, to
develop the thres rotational equations of motion.

4.4.1 Response Side of Moment Equations

A six-step procedurs will be wsed to methodically build up the response
side of the three moment equations. This provides both a mathematical and
phvsical msight into the equations.

4.4.1.1 Step 1. The first step is to examine a small elemental mass, dm, of
the aircrafl that is located at some distance from the aircrafl’s center of gmavity. It
will be assumed that the elemental mass is rotating about the aircraft center of
gmvity with a positive roll mte, pitch rate, and vaw mte (P, {0, and R,
respectively). The distance from the center of gravity to the small mass is defined
HE

Faw = 1 +3f + zk 4.41)

where x, ¥, and z ame the distances in the x, y, and z axes of the body axis
system, respectively. This is shown i Fig. 4.9.

il

Fig. 49 Differential mass in body axbs systemn
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4412 Sil'ap £, Next an expression is developed for the velocity of the
small mass, dm, solely because of its mlation about the center of gmvity. The
velocity for the movement of the center of gravity of the aircraft was taken into
account in the development of the three force equations. The velocity, Fd.m of the
mass relative to the center of gravity is determined using the expression

Vi = [“1&] - Doy * T 4.42)
d.l' By -

Because the amroraft was previously assumed to be a ngid body, ry, 1s constant,

S0
dr
[;-h-] —0 (4.43)
s Bady
and therefore,
Mathematically this vields
B i j k
Fo =P o R (4.45)
X ¥y =
Vaw = (Qz — Ry)i + (Rx — Pz) j+ (Py — Q) .46)

4.4.1.3 Step 3. Next an expression is developed for the linear momentum
of dm solely because of its rotation about the center of gravity. The linear

momentum is found simply by multiplyving the mass times the velocity, namely,
lincar momentum = dm¥

. . ) (4.47)
= dm{(Q= — Ry¥ + (Bx — Pz) j 4+ (Py — Qx)k]

4.4.1.4 Siep 4. An expression for the angular momentum of the differ-
ential mass, dm, is developed using

dH, =r, = (dmF,) 4.48)
Therefore,
I J k
di, = x ¥ z (4.49)
| dm(Qz — Ry) dm(Rx— Pr) dmiPy— Qx)|
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After carryving out the cross product and regmouping the terms, the thres
components of the angular momentum are:
dH, = P{y* + = }dm = Oy dm = Rz dm
dH, = Q" + =" Mm — Ryz dm — Pxy dm (4.50)
dH, = R(x* 4+ y*Mdm — Pxz=dm — Qyz dm

4415 Step 5. The next step is to integrate the expressions for the
angular momentum of dm over the entire aircraft. Because P, (0, and R are not

functions of the mass, they can be taken outside of the integration. Therefore, the
three components for the angular momentum of the entire aircrafl are

Ho= |dH, = P |(#* + Z)dm — QO | xp dm — B | 2= dm

Hy= |dH, =Q |(x* + " }m = R | yz dm — P |xy dm (4.51)

Hy,=|dH, =R {:z+}'z}d.raf—P xzdm = Q| yzdm

The moments of inertia are defined as

I, =[6? +2)dm
I, = | o o+ = dm 4.52)
I, = -{E + ¥ )dm

The moments of mertia are mdications of the mesistance to rotatton about that
axis (that 1s, [ indicates the resistance to rotatton about the x axis of the
aircraft). The produocts of inertia are

Iy = | xydm
fye= | xz dm 4.53)
f.= | ¥z dm

The products of mertia are an indication of the symmetry of the arcrafi
Substituting the moments and products of nertia into Eq. (4.51) vields

H, =PI, — Qf, —RI,
H, = QI —RI, —PI, (4.54)
H, = Rl — Pl — QI,
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H=Hi+H,j+Hk (4.55)

This can also be easily found by applving an expression for angular momen-
tum usually developed in basic physics courses, which is

H = Ia (4.56)

where T is the aircmft’s inertia tensor and @ is the aircraft’s angular mte. The
mertia tensor for an aircrafl is

B b _-'rx_'r- =l
=), I, - 4.57)
=, —J'_H I Body
Therefore,
Iy =L, =i P
Hy = —J'Lj, ‘r_'r:r —J'_H Q 4.58)
=l =l Iz R
!."J.I
Hy=Pl,— Qly — Rl
H, =0QI, -RI, - P, 4.59)

H, = RIL, = Pl - QI

Mote this is the exact same result as Eq. (4.54) that resulted fom applying
Steps 1-5.

If the aircrafl is assumed to have an xz plane of symmetry, the [, and L,
products of mertia are zem. An aimrcrafl has an xz plane of symmetry when the
left side of the aircrafl is a mirror image of the right side about the xz plane.
The [, is not necessarily zero becanse the aircraft is not symmetrical from top
to bottom about the xy plane and not symmetrical from front to rear about the
vz plane. These concepts are illustmted in Fig. 4.10. Notice for L, and [ the
meflection plane symmetry between quadmnts 1 and IV, and 11 and 1. This
leads to a zero value for both these products of mertia. Also notice that we do
not have reflection plane symmetry for the case of [; therefore, it has a non-
zem value.,
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f_ =I.a:-:L'.l| #0

Fig. 410 Adrcraft prodocis of inerta.

The angular momentum components for the aircraft become

-"‘rx =-P-'ru _R—'ru
Hy = Qhy
H,=RI_— PI

= e

H = (PI, _muﬁ+ {E‘!‘r:r-ﬁ'l'{mu _'P"ru}i-

I, -j.'u_:. i = {} | l f_ -I_!.'_'d.-.'l-ﬂ I

(4.60)

(4.61)

4.4.1.6 Siep 6. After the angular momentum vector of the aircraft has
been determined, the final step is to take the time mte of change of the angular
mamentum vector with respect to inertial space but represented in the aircraft
body axis system. The same relationship used in developing the acceleration with
respect to an inertial reference frame from the force equations can be used,

namely,
:m}' 'd.r}] _
— = | — + tigege ¥ Hpoa,
[ & ffmsa L df Joosy i i
-~ -P‘ru_mtz'i"‘p};x_"?};z
[%H} = @y + OF,
Hody . . . .
| Rl — Pl + Rl — Pl | g
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Assuming that the mass distribution of the aircraft is constant, such as neglect-
T FLI:[ slosh, the moments and products of nertia do not change with time,
that is, £, £, fﬂ, and J;, are all zero. Therefore,

_ Pl — R,
[%"] - o, 4.64)
R [ T T
Finally,
| ¢ Y o
w % g, = | P Q2 i | (4.65)
| (Pl = RIZ) (Q,) (Rlz= Pl:)|p.

E{mn - 'P"rxz} _RE{'&-

POy, — (Pl — Rig) Body
Grouping terms vields

- Pl +QRI. = 1) = (R+PQO),

[%"} = | @, — PRI, —I,) +(F* — R*)I, (4.67)
teethy | RE + PO, — L) +(QR - P |

Therefore, Eq. (4.68) vields the three moment equations of motion m the body
axis system, where the left-hand side represents the response of the arcmaft and
the right-hand side consists of the applied moments.

F-"u + ER{"’E = _'|-_'|-:|' _{jE+ PE]'-":: =L
@I, — PRI — I )+ (F —R), =

m +PO(I,, —I,) +(QR — P\, =N (4.68)
m“ﬁﬂ' peeesion rorpling e
ST

L, M, and N are the molling moment, pitching moment, and vawing moment,
mspectively. Unfortnately, the letter L ois used to also represent Lift. This can
be confusing and the reader is advised to carsfully check the context of its use
i any asronautical engmesring text. Recall that the assumptions made in
developing the equations of motion were: the mass of the aircmaft is constant,
the aircraft is a ngid airfame, the Earth axis svstem is an inertial reference
frame, the mass distribution of the aircrafl s constant, and the aircraft has an
xz plane of symmetry. It is, therefore, extremely important to realize that these
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equations are vahd for flight conditions where these assumptions are reason-
ahble.

The aircmaft response side of By, (4.68) can be divided into thres types of
terms: angular acceleration, gyvro precession, and coupling The angular accel-
emtion terms are the easiest o understand. For example, if we take the rolling
moment EOM and assume the gymo precession and coupling terms are neghigi-
ble, we have

Pi, =L

If a rolling moment (L) is applied to the amrcmft (such as with an aileron
deflection), this equation predicts that an angular accelemtion in roll (P) will
result. If a positive rolling moment is apphed, a positive moll angular accelera-
tion will result. For a given apphlied rolling moment, the lager the moment of
mertia, f,,, the smaller the mll angular acceleration. The angular acceleration
terms can be thought of as describing the motion that results from the applica-
tion of tomque (the applied moment) to a motating body with a moment of iner-
tia. For example, if we apply a torque to a flyvwheel, it experiences an angular
acceleration as it spins up.

The gymscopic precession termns describe precession of the aircraft because
of the combmation of angular momentum about an axis and an apphed
moment. For example, consider the rolling moment EOM for the case of a roll-
mg pullup. We will, for the moment, assume the angular acceleration and
coupling terms are negligible along with L. This leaves us with

I OR=L

We next wdentify the angular momentum term for an arcraft in a pull-up (with
positive pitch mte ) as [, (). Notice that [, is the moment of inertia (always
positive) about the » axis and ¢ is the an velocity about the p axis (posi-
tive for a pullup). Multiphed together, we have angular momentum. We will
rewrite this as

—R(I 0 =L
"1.-_.‘,_-.!-
argaler mormentem i pilch

If the pilot now applies a positive molling moment to the aircraft by deflecting
the ailerons, this equation predicts that a negative vawing moment (&) must
mesult. The precession terms descnbe the same type of precession that is
experienced by a gyroscope when a torque s applied. We wall look at a second
example of a gyro precession term for the case of tail dragger propeller
aircraft. Consider the pitching moment EOM. We will assume the angular
acceleration and coupling terms are negligble along with 7.

R(I_P)=M
e
argular mom siem iw roll
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A propdler aircrafl, such as a P-51, has a significant amount of angular
momentum in roll because of the rotation of the propeller. Because the propel-
ler usually rotates cloclowise as seen from the cockpit, the roll angular momen-
tum is positive. With the aircraft on takeoff mll, the pilot will apphly a small
nose down stick input (negative M) to raise the tail. Ouwr abbreviated equation
predicts that a negative yvaw rate () must result. Skillful pilots are ready for
this precession and will apply nght rudder to counteract the negative vaw mte.

The coupling terms descnbe mertial coupling tendency of the aircmft. They
can be easily identified by the [, product of metia. A nomzero value of [
mdicates mertial nonsymmetry of the aircraft. Many modern high-performance
aircraft have a negative [, which indicates a lamger concentmtion of mass in
the two negative quadmnts formed by xz plane of the aircraft. Consider the
pitching moment EOM with the gyvro precession and applied pitching moment
terms assumed negligible and zem yvaw mte (/).

"pz"ru = _"r_'ﬂ-é

We will assume the aircraft is doing a high-speed flv-by and has a negative 7.
If the pilot does a snap moll to either direction, this equation predicts that a
positive angular acceleration (@¥) will result. This will cause the aircraft to
pitch up and could lead to senous effects if the pilot does not anticipate the
pitch up. It can, of course, be counteracted with a nose down stick mput. This
particular case is referred to as roll coupling, which resulted in the crash of
several amrcraft in the 19408 and 19505, before a full understanding of
coupling.

4.4.2 Applied Moments

The appled moments consist of the asrodynamic mlling, pitching, and
}lammg moments, Ly, M, and N, respectively, and the molling, pitching, and
yawing moments because of thrust, Ly, My, and Ny, respectively. Them are no
moments because of gmavity because the weight vector acts through the center

of gravity and the moment arms are 2em. Also, any moments because of rotat-
mg masses (such as jet engines) on or within the airemft have been neglected.

Therefore,

Ply + QR(lw — 5y) — (R + PQWe = Ly + Ly
QI — PRI, — 1)+ (P =R, =M, + M; (4.69)
RI, + PO, — I )+ (QR — P\, =N, +N;

The makeup of each of these moments will be discussed in detail in subse-
quent chapters.
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4.5 Longitudinal and Lateral-Directional Equations of Motion

The six aircraft equations of motion (EOM) can be decoupled mto two sets
of three equations. These are the three lonmtudinal EOM and the three lateral-
directional EOM. This is convenient in that it requinss only theee equations to
be solved simultaneously for many flight conditions. For example, an aircraft
m wingi-level flight with no sideslip and a pitching motion can be malyveed
uwsing only the longtudinal EOM because the aircmft does not have any
lateral-directional motion.

4.5.1 Longitudinal Equations of Motion

The three longitudinal EOM consist of the x force, = force, and y moment
equations, namely,

m{f:n"+ O — RV )= —mgsm® 4 (—Dcosax + L sinx)+ T cos Dy

Q1 — PRIz — L) + (PP — RO = M, + My

J'rrr{ﬂ'" + PV =) =mgoosQcos® 4+ (—Dsma — Leosax) = Tsin @y
(4.70)

One way of thinlang of the longtudinal EOM is to picture an aircafl with its
xr plane coincident with an xz plane fined n space. Longitudinal motion
consists of those movements where the aircraft would only move within that x=
plme, that is, translation in the x direction, translation in the z direction, and
mtation about the y axis. In each of these cases, the xz plane of the aircrafi
would be moving within a xz plane fixed in space. It should be noted that the
L in Eq. (4.70) refers to Lift and not rolling moment.

4.5.2 Lateral-Directional Equations of Motion

The lateml-directional EOM consist of the y force, x moment, and =
moment equations, namely,

Ply + QR = I,) = R+ POV, =L, + L,
m(V +RU = PW) = mgsin® cos © + F, + Fy. M.71)

RI, + PQL, = I )+(QR =P\, =N, + Ny

For any lateral-directional motion the xz plane would move out of some xz
plme fixed in space. Translation in the p direction, roll about the xr axis, and

vaw about the z axis would all cause the xz plane of the aircraft to move out of
that arbitranily fixed xz plane in space.

4.6 Kinematic Equations

In addition to the six force and moment EOM, additional equations are

required n order to completely solve the aircraft problem. These additional
equations ame necessary because there are more than six unknowns due to the

presence of the Euler angles in the fomce equations. Three equations are
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obtained by relating the three body axis system mtes, P, 0, and R to the three
Euler rates, W, @, and @. MNote that the Enler rates are just the time rate of
change of the Euler angles.

To develop the relationship betwesn the body rates and the Euler rates, the
following equality must be satisfied because the magnitude of the three body
mtes must equal the magnitude of three Euler rates. MNote that these are vector

equations.
By = Pi+ Of + RE =P+ @ + D 4.72)

In other wonrds,

VE L+ FE IR =J9 L0+’

Each of the three Euler mtes can be conveniently displaved in one of the axis
svstemns used in tmansforming a vector from the Earth axis system to the body
axis systemn. Because ¥ mepresents an angular mte about the Zp or &7 axis

V- Wi, = Wi @.73)

This Earth axis heading angular mte is illustrated in Fig. 4.11.

The earth axis system is fimt motated abowt the Zp (£°) axis through the
heading angle ('¥) into the X-F-2° axis svstern as shown in Fig. 412, The
new X7 axis lies directly beneath the x-body axis but is offset by the pitch
angle (&).

This first interim coordinate system is then rotated about the ¥’ axis through
the pitch angle (&) nto the X7-F"-2" axis system as shown in Fig. 413, Note
that because the ¥ axis i1s the axas of rotation, the new ¥Y axis 15 the same as

A, (Morh]

-

Ep=i' ¥, (East)
[ Dram)

.

Fig. 411 MNMuastraton of heading angunlar rate in Earth axs system.

IARE Aircraft Stability and Control Page 100

Source from Yechout, T.R. “Introduction to Aircraft Flight Mechanics”, AIAA education
Series, 2003




Fig. 4.12 X'-¥'-Z' interim coordimate system.

¥, @ then mepresents an angular rate about the ¥ oor ¥ axas. Mathematically,
this can be summanzed as

8 =6 =0 @.74)

This second intenm coordinate system aligns the X axis with the body x-axis
as shown in Fig. 4.14.

This second nterim coordinate system is then mtated about the X' axis
through the roll angle (@) into the body axis system as shown in Fig. 4.15. @
then represents an angular mte about the X or Xy axis. Mathematically, this
can be summanzed as

4.75)
.'|.':_ [H-:llﬂl:l
Tl 3
Fig. 4.13 TMustradon of pitch ardmde angular rate.
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Fig. 4.14 X'-¥'-Z" interim coordinate system.

By wsing the tansformations discussed in Sec. 42,1, each of these angular
mte vectorn can be tmnsformed into the body axis system. Therefone,

gy = Pi+ Q0+ Rk = R,(D)RAO M + R (D)O + D (4.76)

The previous relationship is true for the following reasons. To tmnsform ¥
from the k' axis to the body axis systemn requires a positive rotation through
@, followed by a positive rotation through @, To transform & fom the §* axis
to the body axis system requires a positive rotation through @ only. Finally, &
i5 already mepresented in the body axis system, so no tmnsformation 15 neces-
sary., Mathematically, Eq. (4.76) is camied out as shown in Egs. (4.77-4.79).

ANEAN e
- L ] AN H

1] 0 D
+ |0 cos® sin® ||O® |4+ 0 (4.77)
0 =sm® cosd 0 0
P 1 0 0 — sin @Y 0 @
Q=10 cos® sind 0 4+ | cosdB +| 0 | (478)
(R| |0 —sin® cos® || cos@F — sin 0O 0
TP i — sin O 4+ O
2 | = | sin®cos OF 4 cos DO (4.79)
| R | cos @ cos OF — sin DO
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Fig. .15 MMustraton of roll attitede angular rate.

Therefore, the three kinematic equations are

P= —sin@%¥ 4@
@ = sin O cos OF + cos DO (4.80)
R = cos @ cos OF — sin DB

Examples are prowvided to clearly illustrate results from the kmematic equa-
LS.

Example 4.1
An aircraft has the following Euler angles and Euler rates:

W =0deg P=10deg/s
B =0dg @ =0deg/s

O =90deg @ =0 deg/s

Apphing Eq. (4.80) vields:

P =0deg s
=10 deg/s
R =0deg s

Mote that for this flight condition, a 10deg/s Euler yaw rate, "'j’, 15 felt by
the pilot as a 10 deg/s pitch mte, Q.
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Example 4.2
An aircraft has the Pollowing Euler angles and Euler rates:
¥ =0deg W=0deg/s
© =0deg © =20deg/s
®©=90deg ®=0deg/s

Applying Eq. (4.80) yields

P = 0deg/s
Q = 0deg/s
R = <20 deg/s

Note that for this flight condition, a 20 deg/s Euler pitch mte, ©, is felt by
the pilot as a =20 deg/s yaw mate, R.

4.7 Historical Snapshot—Genesis 2000 Flight Simulator

In the late 1980s, Veda, Incorporated, of Lexington Park, Maryland, and the
U.S. Air Force Academy Department of Acronautics developed an engineering
flight simulator specifically tailored to support educational requirements.’ The
simulator was named the Genesis 2000 and solved the full six degree-of-
freedom EOM Eqgs. (4.38) and (4.69) in nearly real time to continuously repre-
sent almost any mission. The delay time between a pilot input and representation
of aircraft motion was less than 0.12 s based on availble computer speed at that

Fig. 4.16 Genesis 2000 flight staton.
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time. The fixed base flight station included an outside visual display complete
with heads-up display (HUD), a display for flight instruments, and standard
cockpit contmols mcluding a sidestick. Figure 4.16 shows the flight station.

A typical expansion of the applied force and moment side of each EOM
mcluded the mfluences of angle of attack, sideshp, elevator deflection, aileron
deflection, rudder deflection, differential tml, speedbrakes, flaps, and spoilers
through the use of approprate derivatives, as will be discussed in Chapter 5. A
key aspect of the Genesis 2000 was easy and quick access to each individual
dermvative. This allowed flight evaluation of the derivative’s contribution to the
overall handling qualities (discussed in Chapter 7) of an aircraft. To do this,
another key feature of the Genesis 2000 was incorpomtion of specific mission
tasks such as appmach and landing, air-to-ground tracking, and aire-to-air track-
img. The system was also used by the Air Force Test Pilot School, the LS.
Maval Academy, and the Bntish Empire Test Pilot School thmughout the
19905, At the Air Force Academy, the systerm was upgraded in 2000 to moeor-
porate current computer technology.

Reference

"Russell, 1. H., Mouch, T. M., and Yechout, T. R., "Integration of Flight Simulation Tnio
the Undergraduate Design Experience,” ALAA TP 90-3263, Al44 JA HS/ASEE Aircraft
Degign Setermy and Operations Corfererce, Dayton, OH, Sept. 19940,

Problems
4.1 Consider the T-37 at the following Euler angles:

¥ = 90 deg B = 410deg D =410 deg

Describe the aircmft attitude and transform the weight force through
these angles to the body axis svstermn. The gross weight is 6600 Iby.

41 A T37 is executing a loop at the following conditions:
Euler angles: ¥ = 0 deg, ©® = 30 deg, @ =0 deg

The pilot observes a pure pitch rate at a constant velocity in the body

axis svsbem:
i B 2040
= ¢ 0.1 rad/s Fg= i ft/s
0 B 0 B

What is the acceleration in the Earth-fixed meference svstem?
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UNIT IV
LINEARIZATION OF EQUATIONS OF MOTION AND AERODYNAMIC FORCES AND
MOMENTS DERIVATIVES

The six aircraft equations of motion developed in Chapter 4 [see Egs. (4.70) and (4.71)] are nonlinear
differential equations. They can be solved with a variety of numerical integration techniques to obtain
time histories of motion variables, but it is nearly impossible to obtain closed solutions (equations for
each variable). Because valuable insight can be obtained from closed solutions regarding the dynamic
response of the aircraft, this chapter will use the small perturbation approach to linearize the equations
of motion and facilitate the definition of closed solutions. In addition, the dynamic derivatives

associated with definition of applied forces and moments on the aircraft will be discussed.

Small Perturbation Approach

Linearization of the aircraft equations of motion begins with consideration of perturbed flight.
Perturbed flight is defined relative to a steady-state (trimmed) flight condition using a combination of
steady-state and perturbed variables for aircraft motion parameters and for forces and moments. Simply
stated, each motion variable, Euler angle, force, and moment in the equations of motion (EOM) are
redefined as the summation of a steady-state value (designated with the subscript ‘“1°’) and a perturbed

value (designated with lower case symbols) as summarized in Eq. (6.1).

=T, +u F =V 41 W= W, +w
P=P +p 0=, +q R=R +r
="+ B=8,+8 b=y + 4

i 1
Fi=Fy+fi Fr=Fr+/; (6.1)
Li=L,+l, M,=M,+m, N,=N, +n,

Ly=Ly+ily My=Mp+my Npr=Ny +ng

For example, if an aircraft has a steady-state trimmed value for U of 400 ft=s and then encounters
turbulence which increases U to 402 ft=s, U at that instant would be

U=U, +u=400+2
The “‘perturbed’” x-axis velocity, u, would be 2 ft=s in this case. The assumption of small
perturbations (small values for u, v, w, p, etc.), allows linearization of the aircraft EOM. The following

four-step approach summarizes the linearization technique:
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Step 1: Recast each wvariable in terms of a steady-state value and a
perturbed value (A4 = A + a). Assume small perturbations (o is small). Multi-
ply out and use trig identities,

Step 2: Apply the smallangle assumption to trig functions of perturbed
angles [cosd == 1 sind == 8 {in radians)]

Step 3 Assume products of small perturbations are negligible (ab == ).

Step 4: Femove the steady-state aquation from the perturbed equation The
remaining perturbed equation & a linearized differential equation with the
perturbed variables as the unknowns.

This approach is illustrated in Example 6.1.

Example 6.1
Linearize the following nonlinear differential equation.

&= ABsiny

Step It A=A +a B=8 +b C=C 4+, Q=40 +m; substiluie these
variables inty the original equation and multiply out

C, + & =4, +al B, + B)sin{ll, + w)
O, +e=[A4,8 +A b +af, + ab]zin{ld, + w)
-f:'l +e=[4A8 +4Ab +af) + ablinl); cos w4+ cosl)) sina]

Step I: cos w == 1) sinm = w (in radians)
O, +e=[A B +Ab+ aB) +ab][sn 0 + wmcosi)]
Step 3: ab =0
O+ e=[4,8, + 4, b+aB [8n 0, + wcosil]
and @ and bo == 0,
C,+e=A B dnl} + 4 bsinl) +af "@n) + 4 B meos il

Step 4: The steady-state equation can be easily identified by going back to the
original differential equation and inserting subscripts of **1™ on each varable.

l:.-..ll — "'!I.BI. iiﬂﬂl

Subtracting the previous equation from the differential equation at the end of
Siep 3, we have:

&= .-!L.biinﬂl = |'.'|'_B|_ En ﬂl = .-!Lﬂlm-msﬂl
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which & the liearized form of the differential equation in terms of the pertwr-
bation varables o, b, ¢, and .

62 Developing the Linearizad Aircraft Equations of Motion
The nonlinear longitudinal BEOM presented in Eq. (4.70) can be rewritten as

mill + OF — RV) = —mgsin® + F, +Fp
Of, — PR{I, — 1) +(F* — B ). = M, + My (6.2)
w4+ PV — QU) = mg cos® cos @ + F, + Fr

where F, and F; are the aerp forces acting along the respective x and = axis
dlf-a::m:rns Lilewise, Fr and F, represent the thrust forces acting along their
regpective directions. T-.q:-u-;:e :Edi-u:- that the Euler angles have boen designated
with capital letiers to conform with the approach defined by Eq. (6.1).

i) Hody-Fiaeil StEhility Axis Ihiring Vrimsmel Flizhe

ﬁ- j
bl By -Fived Sability Asis During Perturbed Fligh

Fig. 6.1 Tlustration of body-fived stmbility axis.

IARE Aircraft Stability and Control Page 108

Source from Yechout, T.R. “Introduction to Aircraft Flight Mechanics”, AIAA education
Series, 2003




The nonlinear laeral-directional equations of motion presented in By, (4.71)
are presenied again here for convenient reference.

Pl + ORI — 1) —(R+ POV =L, + Ly
.u-u{ii"'—r RU — PW) = mgsin®oos® +F, + Fr {6.3)

RI_+ PO —I)+(0R—PI_=N,+N;

As discussed in Sec. 5.3, we will use a body-fixed stability axis system where
the x-stability axis i oriented directly with the steady-state relative wind., Thus,
Uy will b2 aqual to Fo, while F, and W, are equal © zero. This approach
s.ijl'rpltﬁ-ea mp:rﬁmm:thn_uf the E:I':] forces Land moment, However, the reader
i= reminded that, ©v be perfectly correct, the moments and products of inertia
in Egs. (6.2) and (6.3) must be defined relative to this body-fixed stability axis
Figure 6.1 illustrates the body-fixed stability axis

§2.1 Longitudinal Linearized EOMs

To linearize the nonlinear longitudinal EOM of Eq, (6.2), the small pertur-
bation approach discussed in Sec. 6.1 will be wed substitutions of Eq
(6.1) are made in Eq. (6.2) to yield

wl L, + it +(0) + gNF, + w)— (R + PN ¥, + 1]
= —mg sin{ @ + )+ F, +f, +F, +/

TAQ, +§)— (P, + pW Ry + A, — I+ [Py +p) — (R + A1
= My +my + My +my

e, + -+ (P + p0 P, + 6) — (@) + 4L, + )]
=mgcos(®) + @lcos(B + 0+ Fy +04, +Fr, +/7

Applying Steps 24 of Sec. 6.1, these reduce

melie — Fir— Ryp+ W+ Qyw) = —mgloes®, +, +/7
Lg+(l, —IPr+ Ryp)+ (2P p — 2R F) = my+ my
miw — Uyg — Qyu+ Fip+ Pe) = —mglcosd, sin @,

— mgd sin ', cos®) +F, +05

(6.4)

Equation {6.4) represents the linearized longitedinal EOM as a function of the
variables a, v, w, p, g, F, & and .
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§.2.2 Lateral-Directional Linearized EOMs

Linearization of the nonlinear lateral-drectional EOM presented in Bg. (6.3)
alzo use the small perturbation approach of Sec, 6.1, The swall perturcbetion
substitutions result in:

(P +p), +(02, =gk, +00i_ — 1) — R +#= (P, +p)Q, +gill_
=Ly+l4+Lr+1y

ml¥, + ¢+ (R + AU, +u) — (P, +p)F, + wi]
= mg sin{®y + ) cos(@ + 0+ F, +f, +Fr +/7

(R, + AL, + (P, + PN, +@)E, — L) + KO, + giR, + 9 — (A +pIl.
=N, +n, + Ny +n;

Applying Seps 24 of Sec, 6.1, these reduce &

Iofp —IoF — I (P g+ O p) {0 — LRy + O =1, +Ir

mfpp +Ur + B ju— Wp — Pyw) = —mpfzin d) zin®,
+mgpoos e + 0, +/r

I — I p+ Ly — I WP g + O p) + IO+ Rig) = ny+ 0y

(6.5)

Equation {&£.5) represents the linearized hieml-directional EOM as a function
of the variables w, &, w, p, g, r, Emdﬁ,ﬂmmwmblmmﬂﬂhmmad
longitudinal EOM. We thus have a situation with six egquations and eight
unknowne. The kinematic equations [Eq. {(4.807] may be linearized using a
similar approach’ to yeld three additional equations and one additional
unknown (W )—a solvablk nine-aquation/nine-unknown problem for the per-
turbed aircraft EOM,

§.2.3 Simplifying the Linearized EOMs for Wings Level Straight
Flight

Equations (6.4) and {6.5) may be simplified with the assimption of wings
level, straight line Aight for the initial rim, or sieady state, condition. With this

ConEtraint,
& =P =0,=R =F=0

In addition, ouwr choice of the body-fixed stability axis, a8 discussed in Sec.
6.2, leads & the additional simplification of!

I"I_=ﬂ:'|_=ﬂ
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With these assumptions, the linearized longitudinal EOM of Eq. (6.4) become

g = —mgfoos By + 0, + 0
.Ir:,ﬁ =y —=— Wy (6.6)
me( — Uy g) = —mgBzin®, +0, +/r

and the linearized lateral-directional EOM of Eq. (6.5) become

Ip—Tok=1,+1r
mip-+ Uyr) = mg cos®, +f, +/r, (6.7

fTr—I_p=n,+ny

At this point, it is reasomable to ask if the restrictive assumptions of wings-
level, straight fAight will restrict ouwr shudy of aircraft dymamic stability ¢harac-
teristics. Fortunstely, the answer iz mo, becsuse the fundamental dynamic
modes of the aircraft are still present with these asumptions and dynamic
stability characEeristics observed about a wings-level, straight-line, trimmed
Aight condition are representative of those experienced during maneuvering
flight. In short, these jons and choice of the body-fived stability axis
sysiem have allowed zimplification of the EOM v a manageable form s that
understanding of dynamic stability concepts can be maximized.

63 First-Order Approximation of Applied Aero Forces and
Mome nts

We will now forus on the applied aerodynamic force and moment terms
(include f, and m,) in Eqs. (6.6) and (6.7). These represent the perturbsed
change in an aerodynamic force or moment that results from a nonzero value
of a perturbed motion varishle like . We begin with the observation that the
longitudina ] perturbed forces and moment are a function primarily of five para-
meters:

Fuomafa, =, & é,q, 5,.) (6.8)
As a reminder, the parameters w, & & g, and -'-.i, are perturbation varishles. &,

&, and &, deserve explanation because we have not discussed them before. The
angle of attack is defined using the perturbation variable & with the same

approach as in Eg. {6.1).

2= o 4+ &
d& could be thowght about in the same mamner

&= +&
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Because &) is equal to zero (the derivative of a constant), we have & = &, and
we will dispense with the hat for samplicity. The perturbed elevator deflection,
&, is defined in a samilsr manner a5 usad with Eq. (6.1)

i, =8, +8,

Recall that the subscript “1" indicaies the steady-state or trimmed value of the
parameier

We will wee a first-order Taylor series o approximate how e longitdinal
perturbed forces and moment vary as a function of the five perturbed variables
presenied in Eg, {(6.8).

aF, O @,  F, &,
J’-'*_Ei.a”_"ﬁiﬁ_"a&:"'aq"_"ai“

= —— 6.9
oy mu+ﬂ-&u+ﬁit+ﬁ;q+a§“ (6.9)

i ai i i aF, -

_ aa A g T, 4, A%
fa, x T mitg ity It~

MNext, we will use the same approach to define the perturbed lateral-direc-
tional force and moments. We begin with the observation that six parameters

primarily influence the hiieral-directional perturbed force and momenis:

lifa, ma =f(B.B. p.r,8,,8,) (6.10)

Again, §, £ p, r, .-Eﬂ, and .|'-.ir are perturbation varishles, The perturbad sideslip,
B, iz defined using the same approach as in Eg (6.1).

B=p+8

For wings-level, timmed, straight-line flight, 8, equals zero and we have
B =B We will dispense, at this point, with the hat for smplicity. # should be
considered in the same manmer.

B=p,+F
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Beacause ,ﬁ'l iz equal to zero (the derivwative of a constant), we have ﬂ':i‘ anud
we will again dispense with the hat The perturbed aileron and rudder defloc-
tions, &, and &, are also defined a5 perturbations to the steady-state value:

d, =4, +8,

5, =4, +8,

We will again wee a firg-prder Taylor series o approximate how the hateral-
directional perturbed force and moment vary a5 a function of the six perturbed
variables presenied in Eq. (6.10).

al, dly. aL, &L, Aly- al,-
ly=—B+—B+—p+—r+—48,+——48,
T a T Tt wpl W @, W,

iy aF aF aF aF, . aF, .

Ay Ay | Ay Ay Ay Ay

o= g+ A+ p+ Fid—04,+—4, (6.11)
AT o ] ap o 35,

AV . BNy o . AN, . BN Fa g Fa g
n, = B+ B+—p+ re—d& +—4&
4T ap B ap B i

The Taylor series representation of Egs. (6.9) and (6.11) makes the guasi-
steady assymption that the perturbed forces and moment are only a function of
the instantanecus valwes of the perturbed motion variables. For the majority of
rigid airplane dynamic stability analysis (at frequencies below 10 rad/s), this
assumption provides accurate reaults

§.3.1 Nondimensionalizing the First-Order Approximations

At this point, it & cusomary 1o nondimensionalize the perturbed variahles
in Egs {69) and (6.11). This & typically done to facilitate comparisons. It
iz acoomplished in a straightforward manner. First, all angles (=, &, #, §,, and
&,) are represented in radians, which are dimensionless. Second, the perturbed
r-fnis welocity © i divided by the steady-state welocity L7y to yield w/L,
which iz a dimensionless ratio, Third, the perurbed longitudinal angular rates
(& and g) are nmltiplied by &/20 to yield &e/20, and ge/20,, both nondi-
mensional ratios when & and ¢ have units of radians/second. Fourth, the

d lateral-directional angular rates (f, p, and r) are multiplied by by20,
to formn BhSIL | ph ALY, and pb 20T, Agsin B p, and F ooust have units of
radians/second to make the mtics dimensionkss. This & the conventional
approach to nondimensionalizing the perturbation variables, The “2" in the
denomimainr of the nondimensional anpular rate terms comes from the roll
helix angle (the angle that a wing tip makes with te forward velocity vector
during a molling maneuver). It is maintained in the other angular mie terms for
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consisency. With the nondimensional perturbation varables incorporated, Egs
(6.9) and {6.11) become

_.f' _ E'F_I‘ i .-I _ E'F__' ﬂ:l:' q‘f F-I‘ j
A, — El_ﬂ th o E'-.I'l‘ o
oy EL’
EMJ u EH_] " E'I-:I"_,. EH_] E’_:' &'I-:I"_,. =
— | = - —= —_ = —_ b .12
My = {UL:] TR & '[:EL’J 5 3¢ 20n A" ®13)
20, 3T,
F'[:u:] i, ar,._{:i:;-;.l ar,._{q'c;.l 8Fa, 5
A 7 o T A FTT P T
th 20 2Lh
gy A N p.!: a.r_,. h
47 g I er 2,
EEUL .EU
af, = o4
“ TR p \W) T b . \2T,
20, .EU 20U,
aF, . aFy; .

As, ° | @s, "

_aN, an, { po aN, [ pb aN, [ rb
m=gpi+ g () * 7 () % (om0)

1A T, T,
Ny p | BN
ag, © | a9,

Equation {6.1%) iz the nondimensionalized longieding]l egquation for per-
turbed forces and moment, and Eg. (6.13) is the nondimensionalized, laeral-
directional, perturbed force and moments aqusation.

3.2 Longitudinal Perdurbed Force and Moment Derivalives

We will next analyze each of the partial derivative terms in Eg. {6.12) a0
thet they may be expressed with common longitudin ] aemsdynamic oo fhc ients
such as C;, Cp,, and C_. To do this, we will analyze a perturbation in angle of
attack (&) about the body-fived stability axis, Figure 6.2 present the axis
sysiems asmociaed with an exappersted & perturbation. Notice that the instants-
neous velocity, I, defines the direction of the lift and drag coefficients (Cp
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harison

zo. ’

-:I:-.-‘ L

Fig. 6.F Axis systems mwocimbed with mn angle of mtdsck perturbation.

and Cp). The coefficients O, and O, are defined melative to the body-fAxed
stability axis, which has its x axis aligned with F__ .

83271 w/l), derivatives. The w/U, derivatives consist of aF, falw/TN),
M f (/TN ), and 8F, fifu/U )in Eq. (6.12). We will begin with aF, /a(u/T7)).
F, i defined along the body-Axed stability x axis. Figure 6.3 presents
the veciors associated with the analysis, Notice that the vectors U5, and F_, are
now shawn melative o fixed space.

Fy may be defined in terms of the coefficient C, which is shorthand for
EF'_.‘- a5

F, =C_4%
We then have
Fa, _ ACHS)
E'L—rl E-L—rl |

where the |, indicates that the partial derivative must be evahmied at the
steady-state condition where the perturbation variables such as & and w are
zerg, We must do this because the partial derivatives in the Taylor series
expansions of Egs. (6.12) and {6.13) are simply slopes used for a linear projoc-
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Fig. 65 Mustration of & o pertorbs bon

tion of perturbation values about the steady-state trimmed condition. Because
both C; and § may vary with «, we take the derivative in two pans:

aF,  BMC.§5) M g
2= 208 _ Legs| s (6.14)
HE ﬁ'—rl 1 ﬁ'—rl | ﬁ'L—I |
d B

We will address part A of Eq. (6.14) first.
From Fig. 6.4, we have

C, = —Cpoosl + Cp sin &

and with the small perturbation sssumption, this beoosmes

C r=—Cp4C & {6.15)
Ising Eq. {6.15),
o o) o
—ar‘*—ﬁ:f |_a.“L&|| (6.16)
T [ Y
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Fig. d HMustration of resnlution of lift and dreg coefficent

Evalusting Eq. (6.16) &t the seady-stie condition, & = (0, and, for part A we
have

ac 3Ch

i}iﬂ:—i=—r:n_ (6.17)
U, U,

Cp, is called the speed damping derivatve. It represents the change in drag
coefficient with respect o &/, and its valee & dependent on Mach number,
The value of Cp B generally zero or very small for pretansonic, subsonic
Mach numbers. In the subsonic, transonic regime approaching Mach 1, Cp s
generally positive indicating the significant drag rse a5 sonic Aight is
. Abovwe Mach 1, Cp iz generally negative.
Retwrning to Eq. (6.14), we now look at part B.

= = I & I .
B B G el

I I r
A -uvgd-u _ = U3 et2iv; + b

Evalustion at the sieady state condition wene = 0 vields

g i
—r=pUT =124, (6.18)
(2]
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where g is the seady-stale dynamic pressure. 'We now are able to incorporate
Egs. (6.17) and {6.18) into Eq. (&6.14).

i, _ _
?'— = —Cp @5 +C.52g,),
78

When evalusted at the sieady-stale condition, ¢, = —Cp, and §= q,. These
substitutions result in

aF, _
— = —(Cp_+ 2Co M & (6.19)
[

The besuty of Eq. (6.19) & that the derivative iz now expressed in erms of
aerodynamic characteristics such as Cp  and Cp, which can be estimated
analytically, determined from wind tunnel esting or computed with computa-
tional fuid dynamics (CFD) technigues,

The next w/Uf, derivative to be considered is oM, /Nu/U). Because
M, = C_gS¢ and both C_ and g may vary with i, we have

My _ E"i- §5& +r:_:::-—ﬁ"l';— (6.20)
el
woAw) LT Aw)
We will define
B _
e =G (6.21)
U,

Mote again that the subscript @ in C, really implies partial differentiation of
Ce with respect & “w/LN". With the substitutions of Egs. (6.18) and {6.21),
along with evaluation at the seady-state condition, Eq. (6.20) bacomes

oM S =
?i! = Coam 156+ O SE(24)
o

and, in combined form

aM R
?5'- = (T + 20, W15 6.27)
o
The derivative C, resuls from changes in G, and the asrodynamic cener
location with changes with forward speed. Probably the most notable effect on
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C o i the aft shift in serodynamic center that eocurs in the subsonic, transomnic
speed range. As the serodynamic center moves aft, a negative pitching moment
rezults that typically resulis in a negative C, . Thus, in this range, the aircraft
tends i experience a nose-down pitching moment with increasing speed. This
phenomena i commonly referred to as “Mach Tuck," a characteristic that
caused the crash of several high-speed subsonic aircraft that were not able to
pull out of steep dives as the speed increased and ., became more negative.
As a result, &, is commonly called the Mach twck derivative. O, is the
steady-state serodynamic pitching moment It will be nonzeros for cases where
a thrust pitching moment must be comteracted by an sercdynamic pitching
moment & rim the aircraft to a otal pitch moment of zero, For all other cases
such as gliders and power-off Aight, C,, will be equal to zen.

The last w/U7, derivative is &, /o(u/L). We begin by referring to Fig. 6.2
and defining

Fu,= C4S

Using the same approach as with Eq. (6.14), we have

ik g5 o, _
E.J-_ﬂ[ﬂ. | =Tz 28 _|.c;;ﬂ_ﬂ"£_
UI. Lrl 1 U|_ I UI. ]
where {referring & Fig &.4)
C.o=—C,coslk — Cpen&

With the assumption of small perturbations, this becomes

O, = O — Cpt {6.23)
anad
ac, ac ay .
Euﬁf—ﬂi —ETLu (6.24)
Lh 1, oy

Evaluating Bg. (6.24) at the steady-state condition, & = 0, we have

8C, 8
= :s—H,f:—r:L_ {6.25)
onn

Cp mepresents the change in lift coefficient with respect o wvelocity. The
g/ Mu/UN ) derivative in Eq. (6.23) follows the same development as found
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with Eq. (6.18), ag/tu/L") = 2g,. Incorporating Egs. (6.18) and (6.25) into
the original expression for &F, /o(w/L]) and realizing that C; = C; at sieady
state, we have

— ==, + 20, g, 8 (6.26)
3

Example 6.2

Find the u/U, derivative 8F, /#u/U,) for the F-4C sircraft at 35,000 ft and
Mach 0.9 (LU, = 876ft/s, §=283.21b/fC", §=3530R" if Cp =0.03 and

Cp, =0.027. If ¥ is perturbed to 880 fi/s, find the perturbed applied aero
force along the x stability axis {Jf ).
Starting with Eq. {6 19),

aF
—t = —{Cp_ + 2Cp )15 = —(0.027 +2[0.03[)1283.2(530)

—t = —13,058.41b

To find f; , we first find the perturbed velocity i
u=0U—-0U) =880 — 876 =4 fi/s

and, from Eq. (6. 12) for only a @ perieshation

_ W fuN  saseaf ) = _seem
So =—ar\ g ) = TR ) = 59

Because f, is positive along the positive x stability axis, we have predicied a
596~ increase in the drag of the aircraft if the velocity perturbs by 4 fifs.

68322 x dervatives. The & or perturbed angle of attack derivatives,
consist of &, (3&, 3M, (5& and &F, /& in Eg. (6.12). We begin with 4F, /36
and Eq (6.15) for C..

EF',.‘ B o, =0
b & T
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B0, B | BCp.
=t=——2l+=LE+ G (627

Evaluating Eg. (6.27) at the steady-state fight condition {& = 0},

aC
E I
and
aF i
=== (—Cny, + Co, M (6.28)

Cp, is the same & the Cp discussed in Sec. 5.3.1 and Eq. (5.16). It is basi-
cally the slope of the Cp, v & plot at the trim condition, &, {see Fig. 54).
The mext & dernvative to be considered is oM, /o, This becomes

oM, o, _ - -
_E'ﬁ: =_q'ﬁi T L=E‘_ﬂll.“i: (6.29)

Com, i3 e same as te C, discussed in Sec. 53.3.1 and Eq. (543). It & the

lomgltudinal stade stablity dervative, which must be negative in value for
longitudins | static stability.

The last & derivative is 4F, /i We begin by referring © Fig. 6.4 and Eq
(6.23)

dF aiC, aly oCp .
_"'- ——Tap [ _"-L o= _ i
® - mr "[: = mT Co "'S| (6.30)
Evalusting Bg. {6.30) at the steady state flight condition, & = 0, we have
A (Cy + o WS 6.31
= —(Cy, + Cp, M (6.31)

Cp, & the same & the ¢ discussed in Sec. 53.2 and Eq. (5.30). It is
commaonly referred to a5 the it curve slope.

Example 6.3
Find the & derivative aF, fo& for the F4C aircraft st the same fAight condi-
tipns &5 those of Example 6.2. C; i equal i 3.75/mad. If the F4C is timmed
at an angle of attack of 26deg and then is perturbed &0 3.1 deg, find the
perturbed sero force along the = stability axis {f ).
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Starting with Eq. (6&31),

aF

-5 = —Cp, + O 0,5 = —(3.75 + 0,03)( 283, 2)( 530)
aF

ﬁf- — — 567,363 Ib/rad

To find f,, we first find the perturbed angle of attack &
& =a—a =31deg —2.6 deg = 0.5 deg = 0.00873 rad
and from Eq. (6.12) for only an & perturbation

i,
S, = ?"'ﬁ: = —567,363(0.00873) = —4951 b

Because f; is positive along the positive = stability axis, we have predicied a
4951 1b increase in the lift of the aircraft if te angle of attack perturbs by one-
half degree. This may seem very large, but remember the aircraft i at Mach
0.9

£.3.2.3 Quas-steady de/ 2L, denvatives. If a rate of change in angle of
attack (&) is present, a lag in the development of downwash at the horizontal tail
oocurs. Because the a derivatives assume that the downwash is fully developad,
the “ec/20N " derivatives prowide a correction to the x derivatives when the
aircraft is underpoing a rate of change in angle of attack.

The fit &52L, derivative in Bj. (6.12) to be considered is &F, f
cfdie/ 20N ). Using a similar approach to the w/ L) and o derivatives, we have

By N, g5) . .
&= A g8 = —Co .5 (6.32)
3w,  Im,

The derivative Cp, represents the change in drag coefficient with respect to
nondimensional & For most applications, the lag in downwash because of a&
has litde effect on the drag coefficient, therefore, it is typically assumed that
ED =ﬂ

The next de/ 2L, derivative that we will consider s &F, /d(de/2L7). Again,
we lave

aF z
4 _ NG9 _ C g5 =—Cri¥ 6.33)
" Sl EE
T, 20,

'_l'h.-e derivative E‘I__ is sigmfcant, and we will de'.-'-elu-pf an approach to estimate
it Remember that E‘I_ should e considersd & cormection & E}__ for monsieady-
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state conditions. Figure 6.5 presents an aircraft experiencing an & as it transi-
tions from ooy 1o ag. If this change in & takes place in Ar seconds, we
have

.:H_.:.i.l

a = A

This figure also shows the change in dowmwash angle that oocwrs at the hori-
zontal tail. The change in downwash angle will be defined as

Ar =g . — B
Az can also be viewed as the comection needed to the steady-astate downwash
angle o compensaie for the downwash lag. It can also be estimated with
Ar = —— — At = — —als {6.34)

defda is the rate of change of downwash angle with angle of stack as
discussed in Sec, 5.3.2, Aris the time it takes for the final downwash to travel
back to the horizontal il Referring & Fig 6.5, Ar is nomally estimsted as

X, o, —x
Ar="="2_ & 6.35
= o s
Thus, By. (6.34) becomes
de X
Ar = — —d— 6.36
dx U, (6.36)

Because the estimate of the lift coefficient at the horizontal tail is based on the
steady-state angle of attack (by using Cp ), we next estimate the comection
(AC, ) neaded to the lift coefficient because of the lag in downwash (resulting
froan &), This becomes

X,
ML:- = —'Ej_‘.{ﬂ&:l = {'Ej__ :]EIIF {(6.37T)

The correction o lift coefficient & positive because the seady-staie lift coeffi-
cient assumes a fully developed downwash angle that reduces the lift Down-
wash lag results in the onginal downwash angle being maintainsd, resulting in
additional lift over that predicted for the steady-state angle of attack during this
inerim pericd. We next use the echnigues of Sec. 53.2 and Bg. (637) to
predict the increase in lift coefficient for the entire aircraft

&y ds X, Ay
ACL = ACp & = (Cp,) & U—"m. ; {6.38)
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Recalling from Eq. (6.33) that we wanied i develop an expression for O, we
heave

an

Finally, we can take the partial derivative of Eq. (6.38) with respect to & and
substituie the result into Eq. (6.39)

W, ds X, &

Cr, = {E"-:'E L—,m 5 {6400
X "':.
Recalling from Eq. (53.44) that the tail volume ratio, F,. iz aqual to . .
(6. 407 bacomes
ds

The last de 2L, derivative to be considered is oW, /ofdee/ 200 ). Again, we
heave
i . o, g5
5 o et
2o 2on

= O, 4,52 (6.42)

E_*T-EE.UHEE'MIﬂhEﬂn-EMﬂ“'Eh |ﬂgp}bﬂw11ﬁﬁﬁmm5ﬁﬁ]}‘mitﬂ
gbtain the estimate of O Thue, Eq. {(6.41) & oultiplied by the nondimen-
siomal moment arm .t',,,-'tl'hmg with a negative sign indicating that positive lift
on the horizontal tail produces 3 nose-down (negative) pitching moment to
obtain C__ .

de - X
O, = —E{E'L*jﬁmi-’*?" (6.43)

As a rule of thumb, for many airplanes O & approcimately equal to one
third the vale of C, [Eq. (6.49]].

Example 6.4
Find the de/2LN, derivative ol ,/ofae 20N) for the F-4C at the same condi-
tipns &5 presented in Example 6.2, & for the F4C is 168t and C,, & — 1.3 per

rad. If & & 0.5deg/s, find the perturbed pitching moment sy, .
Starting with Eq. (6.42),

M y I _ _
= = E:__gl.“it = — 1 H2B3I 253 16) = —3,121,997 fi - Iby/rad
2Lh
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To find my, we we Eg. {(6.12) for only an & perturbation

aM, [ & (0.5/57.3X 16
my=—= {:EUL:] — —3.|1|.q-;-'.n[: 5E76) ;'l = —2488 ft-1b

307,

MNotice that degrees /second are comveried to radians second 1o maintain consis-
tent uni, We have predicted a nose-down pitching moment of 2488 ft/1b
resulting from a positive 0.5 den /s &

6.3.2.4 Pitch ratke 9&/2U, dervatves. The g&/2U, derivatives consist of
aF, [#gE/2U,), aM,/Hge/2U,) and &F, /#gé2L),) in Eq. (6.12). We begin
with &, /d{ge/200).

aF,  MC.§5
A, = - -
—_— = — T = —i = it 44
T . gc - o9 (6.44)
20, 20,

The derivative Cp mepresents the change in drag coeffcient with respect to
nondimensional pifch rae. For most applications, this derivative is very small
and ssmemed W e agqual to zero (O = ).

The next “g&/ 2L, " derivative to Be considered is oy o gie/2TA ).

A, z
4 _HCH) _ o oap LS (6.45)
g dc L9 h
T,  “am,

Cp should be thought of a5 the change in lift coefficient bacause of pikch rate.
E:i'faring to Fig. 6.6, it can be seen that a positive pitch rate, g, results in a
downwand velocity, ), at the horizontal tail.

Histiznimal
[ail

=i

. " S —
\—t g,

Fig. fifi Nhostration of change in angle of sttack &t the orwontal tail becanse of
pitch rmbe.
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This downward velocity indwoes an increase in the angle of atiack for the
horizontal tail As,, which can be defined as

Xy . aX,
Az, = tan~" T2 o T4
b o, O

This increase in angle of attack results in an increase in horizonts] tail lift,
which can be guantified in terms of an incresse in lift coefficient because of
pitch rate

i,
..‘.'I.I':I‘ = E&*{ﬂm = EL\.*{: Lrl)

The change in lift coefficient for the entire aircraft then bacomes (using the
technigues of Sec. 5.3.2)

_ o (#5), 5%
AC = E}__*{: o, :}m, G {6.446)
EI., may be deemined using Eq. (6.47)
aCy }_'I.E';_ X, “i
L T & I‘-. g Ly 1T A
el 1) 2L

The derivative EI-. will typically have a positive valee and wvary with Mach
number

The final g&/2L; derivative © be comnsidered is oM, /olge/20)). Again, we
have

aM, AC.GSE o

q;:' - qi — . §.5E (6.48)
3 3

. "I

{:' results from the same increase in horizontal tail it becauwse of pikch rate
m was discussed for Cp . Thus, Eq. (6.47) is simply multiplied by the nondi-
mensional nmmtam.t’,-‘tmid a negative sign is added to indicate that a
positive pitch rate resuls in 8 nose-doan (negative) pikching moment

a0 _ X,

c == _ e AR 6.49

AR L g .49
3T,

{:' mmﬂedﬂﬁﬂﬂ-hqhgdﬂiﬂhfhmaﬁwmwmﬂtfﬂwﬂw

l-nngtmdml dymamic sability characteristics. It B negative (providing a
moment that opposes the direction of the pitch rate) and will be the primary

factor (along with C. ) for damping out pitch oscillations, For most aireraft,
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the wing and fuselage alko contribue to pich damping to account for this
effect, the walue of 1':',,_|r predicted by Egq. (649) iz typically ncressed by
approximately 10%. OF course, for tilless aircraft the wing body contribution

becomes the primary contributor to C_ . An analysis of Eq. (6.49) reveals that
-E'_Tu.pmpm'tmmltuﬂhe&qweuf JI-[ii"' comains an X, term). Thus, X
becomes an important design  parameter when -m:mﬂ-emg hnglmdmaj
dynamic stability.

Example 6.5
Find the g /207 derivative aF, /o(gc/2L7)) for the F-4C aircraft at the same
Aight conditions a5 those of Example 6.2 -|':}_lr B equal to 1BD. If g is
2. 5deg/s, find the perturbed sero force along the = stability axis (f, )
Starting with Eq. {&.45),

A
i ul
B3

= —Cp 15 = — 1.8{283.2){530)

5

— % — _270,1728 Ibjrad

q'l!'
T —
20,

To find ;. we we Eq. (6.12) for only a g perturbation

_ 8F, 25757316
“'- } _aqp. 172 g B 3TAMAENY e

2HETE)
zyl

MNotice that deg-aes.,-':a-emnd are comveried to radians fsecond to maintsin consis-
tent unils. Because [ is pu:atn--e along the positive z stability axis, we have
predicted 10771k increase in 1ift if pitch rate perturbs by 2.5 deg /s

Example 6.6
Estimate the pitch damping derivative, C, , for an aircraft with the follow-
ing characteristics E‘I__‘ = (L0775 /deg, i, _ﬂﬂ'& ¥, =0.375, (/@& = 3.0.
Starting with Eq. (6.49),

X,

C = Tk — _0L0TSHST.3N0.0R(0.375)3.0

- I—-.’I*
Cp =948 /rad

Neotice that Oy has been comveried to per radian.
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8.3.2.5 8, derivatives. The &, derivatives consist of 8F, (388, 8M, /a5,
and @F, /o8, in Eq. (6.12). Using a similar development to that for the previous
derivatives, we have

By, #C.45) . .
G == = =, i {6.50)

Cpn. iz the change in drag coefficient becawse of elevator deflection As
distussed in Sec. 5.3.1, it is typically very small and usually assimed o be
| & zero,
i, /o, becomes

M, _ B

5 .
= =—5 = Gu, 15¢ 6.51)

iy is the change in pitching moment coefficient because of elevator deflec-
ti;':ﬁ' and i a primary control derivatlve, as discussed in Sec. 32. It & ako
referred v as the elevator conirol power derivative. it was previously defined
with Eq. (5.46).

Finally, 3F, /68, becomes

o,  WCg .
=, 5= -0, 35 6.52)

E‘;_*_ iz the change in lift coeffcient because of elevator deflection. This deriva-
tive was discussed in Sec. 5.3.2 and was defined with Eq. (5.32).

The & derivatives were developed assmming a conventional (tail aff) aircraft
with a horizont] tail and elevator configuration. OF course, a variety of other
longitedina] control conficurations may e used with modern aircraft These
include stabilators, canands, and flaps. Por these cases, appropriate control deri-
vatives must be developed using the same approach presented here for the &
der ivatives.

Example 6.7
Find the & derivative aM /a8  for the F-4C aircraft at the same fight
conditions a5 these of Example 6.2 O, & equal o —0058/md. If &, is
| deg, find the perturbed pikching moment, m,.
Starting with Eq. (651,

M
aﬁJ = Cpy 156 = —0.058(283.2)530(16) = —139,289 i - Ib/rad
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Table 6.1 Sommary of ongitodina] derioatives

Dy e M= Morma] sigm
Ch Spesd damping dan vatve + ar —
I:'._ Mach ok demvaine + ar —
I:'J__ Hane + ar —
C Hone -+

I
Cm, Longindinal stxtic shility dernatine —
I':'J_|I Lift curve slope -+
Ly Chagi-sieady derivative =
Co, Crozsi-sieady derivative -
Ci, Crozsi-sieady dermvative +
C Mon= =1

&,
I':'_'l Pitch domping demivat v -
E'J_‘ Hon= 4
I':D:. HMon= ==
E-:.. Eleyator cmitrol power —
E'J_'_. Hone -+

right of the aircraft nose of from the pilotk: perspective, “wind in the right
ear™ A review of the lateral-directional control deflection sign comvention from
Sec. 52 B ako elpful Trailing edge up right aileron deflecion and trailing
adge down left aileron deflection is defined a5 a positive &, Trailing odge left
rudder deflection s defined a5 a positive 4, .

6.3.3.1 Sidesilip "f" denvatives. The § derivatives consist of al, /6,
oF, /af, and aN, /88 in Eq. (6.13). We will begin with al,/a&f. L, is the
serodynamic rolling moment and may be defined in erms of the rolling moment

ope fhcient O with Eg. (587

L,=Cq 5
We then have
Eiu’_J oC
— §150 = CL g 50 . 54
ap _ﬂ e,l!'t { ]

iz the lateral (moll) state stabllity dervative as discussed in Sec. 552 1
It must be negative if an aircraft has roll swtic smbility, An estimate of E'JJ CaEn
ke obmined through snalysis of the four aircraft design aspects that have the
greatest influence on O, , namely, peometric dihedral, wing position, wing
sweep angle, and the vertical wil. Reference | presents such an approach
However, because of the complex inermction of each design feature wind
tunmel andfor computstional Auwid dynamic analysis is also aupoested.
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In a similar manner, development of iiF',. S begins with &8 restatement of
Eq. (5.85):

FJ' = C g5
and
EF' 8, _ ~
ﬂ:ﬂ = ﬂ:ﬂ g8 _Q‘ql.“i {6.55)

The derivatve E‘H iz normally negative and was discussed in Sec. 55.1.
Finally, aN,/of i developad in the same manner starting with Eq. (5.94).

Ny = C.qn5b
We then have
vy 8C, - _ -
ﬁ = ﬁ'ﬂ'rﬁ' = E‘_‘ql.ﬁ- (6.56)

The danl.atl.--e-l': is the directonal {yaw) stafle stabllifty a5 discussed in Sec.
5531, It must be positive for the sircraft v have directional static stability.

Example 6.8
Find the § derivative al, /38 for the F-4C aircraft at 35,000t and Mach 0.9
(Uh, =876 fifs, §= 2832 /A°, § = BOR", b =38.TR) if C,, = —0.08 If §

5 perturbed i 1deg, find the perturbed rolling moment 1.
Starting with Eq. (6.54),

% = E‘,,jl.ﬁ = — 008283 253038 T) = —46d 07 fi - Ib/frad
To find [, we use Eq. {6.13) for only a § perturbation
Iy = H;E'I'ﬂ = —d4id 6N 15730 = —8,10909 fi/1b

MNotice that degrees are converied to radians to maintein consistent units,

£.2.3.2 Quag-sleady Bb/2U, dervatives. Similar to the discussion of
Sec. £.3.23, if arate of change in sideslip (f) iz present, a lag in the development
of sidewsash at the vertical tail oocurs. Becawse the [ derivatives assume theat
the sidewash i fully developed, the Bb/2L| deriwatives provide a correction Lo
the § derivatives when the aircrafl is undergoing a rate of change in sideslip.
These derivatives are generally considered negligible because of the melatively
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unchstrucied flow that i present at most vertical wmils. However, they may be
significant in the high subsonic speed region.

The fist AR/2L, dervative in Eg. (6.13) to be considered is
oL, Sk 200 ). Using a similar approach as with the § derivatives, we have:

al o iy Sk -
— = : = () g 5 6.5
B B L (6.57)

20, 2T,

i b

The next two §b/2L, derivatives follow the same patiem.

aF 3

LN LY (6.58)
7 TR R

W, 2,

N,  BC§Sh

TR T (6.59)

Methods for estimating the ﬁb,-'i[-’l derivatives are presented in several Aight
mechanics and sircraft design tests

6.3.3.3 Aoll rate pbj2L7, derivatives. The pb/2U, derivatives consist of
By (B pb2L,), BF., [# pb 2U,), and 3N, /o pb 2L1) in Eq. (6.13). We begin
with L./ 8 pb/ 2L ).

al, _ ac
Py Y
U, 20,

§15% = €, §, 55 {6.60)

The derivative EJ- B called the roll damping derivatve. It represents the
change in rolling moment coefficient with respect to nondimensional roll rate
and is umally negative (providing a moment that opposes the direction of the
rall rake). E‘I- iz & very importnt fetor for bheral-directional dynamic stability
characteristics. Three aircrafl component have a primary influence on the
wvaluwe ufm wing, the horzontal tail, and the vertical tail.

As il in Fig. 6.7, mll rate induces a vertical velecity contribution on
the wing and horizontal tail At te wing tips, this vertical velocity because of
roll rate has a3 magnitude of pb/2 Of course, the verical velocity because of
mll rate decresses as the distance from the fuselage decreases

Figure 6.8 ilhstrates how this vertical velocity bocause of moll mie changes
the angle of attack at the left and right wing tip.

Thus, with this illetration for a positive roll mie, an increase in angle of
attack is experienced on the right wing and a decrease in angle of attack is
experenced on the keft wing. This change in angle of attack on the wings and
horizontal tail becsuse of rmoll rate resuls n an incresse in lift on the nght
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Fig. 6.7 Wing welocity distribution becanse of mll mte.

wing and a decrease in lift on the left wing. Thus, a roll damping moment is
created that is in the oppesite direction of the roll mte and & negative. OF
couwrse, this analysis assumes that the angle of attack remains below the stall
angle of attack on both wings, Methods for estimating the wing and horizontal
tail contribution o C, are presented in several fAight mechanics and aircrafl
design text. In genua] terms, increases in the span and/or area of the wing
and horizontal tail will result in an increase in {.'.'Jr

The absolute value of this change in angle of attack at the wing tips due to
moll rate J2U00 i called the roll helix angle. It rides the basis for the
form of nondimensionalization approach used angular rates in Sec.
6.3.1. The roll helix angle has physical meaning as well It can be thought of
generally as the angle that the wing tip light would make with the horizon for
an aircraft undergoing a roll rate (if observed as the aircraft passes through
wings kewvel).

The contribution of the vertical tail to C, may be estimated by first fAinding
the force on the vertical tail bacause of mlqrﬂa'e. Looking at the aincraft from
the rear using Fig. 6.9, we see that a positive roll rate creates a force on the
tail in the negative y direction. We call this sideforce F,, where F"-... = —F,.

Figure 610 analyzes the velocity components at the center of pressure for
the aircraft shown in Fig. 69, There is a velocity component in the x direction
because of the forward velocity and a velocity component in the y direction
because of the roll rate, p.

LAl Tip Kighn Tip
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Fig. % Hear view of mircrea | wndergoing psitive mll rate.

The angle Az, is the same as an effective sideslip on the vertical tail and
may be approximated with the following equs tiomn:

P2,
Lh

Az = (6.61)

Aax, results in generation of the sideforee, F,, based on the lift curve slope of
the vertical tail, E}__.. F, therefore becomes

F,= O, Axgs, = EI__[:L—,I’;'];,::, (6.62)

This sideforce on the vertical tail because of moll raie also produces a negative
rolling moment (L, ) about the center of gravity because it ack at z, above the
.. Recalling thet, FJ,_._ = —F,,

ad

L,=F, 3 =—Fz3 =Cb (6.63)
T =

II-I

=TT Sutr,

View From Top
Lo of Werhical Tl

Fig. 10 “Velociy omponents at the vertical tail resalting from pasitive roll raie.
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Combining Ege. (6.62) and (6.63), and solving for C) , we have

C, = —E‘L_{%:}m 'f;’ () (6.64)

Taking the partial derivative of Eg. (6.64) with respect & g,

o d
% = Cr, {;—J’fi(%j

Finally, we obmin an estimate for the vertical il contribution to the moll damp-
ing derivative in nondimensional form

_ao 2, ay a2 S
E‘lr._a{pb:}_ 5 __1":&{%) L3 (6.65)
3T,

Bacause O, -[:,,n'.bf, My, and 5 /5 are all positive, ©;  must be negative.
The next” ply 2L, derivative to be considerad is ﬁp}ﬁ{pﬁ;‘iﬂll We begin

with
aF,  AC.ES
Pﬁ - ﬁ‘ = C, 5 (6.66)
o

The vertical tail is te major contributor to O, and the preceding analysis to
estimate Eér is appropriaie. Recalling thaet FJ, = —F _, we express F_ (the

side foree becase of mll raEe) n tems of 1‘.‘r|.-.|'=.-I side force coefficent of the
entire aircraft

F,=—F, =—C, §,8 (6.67)
Equation (6.62) is then substituted ints Eg (6.67) and solved for C,

_ AT -1
o= (F)E S

Taking the partial derivatve with respect to p, we have

e :
L= -G, {z—:;]:;, % (6.68)
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Finally, we obtain an estimate for the vertical tail contribution to the side force
with respect © roll rate derivative in nondimensional form

ac
EU P = E‘,_ ==1='1‘:',,r (6.69)
S{EUL
Combining Eqgs. (6.68) and {6.69), we have
'r::l-,. EEUL { 'r:I.b. :'(
Simplifying and rearranging, we have
2}, Fa

€, = 20, {%]11_; (6.70)
v 5 generally negative; howewver, at high angles of attack, z, may become

regntveuﬂ:ie center of pressure of the vertical @il drops I:Ehw ﬂ:E x stability
axis, For that case, C, will be positive.

The final pb /207 &ﬁwii-.'e to be considered & N, /o pb/2L7 ). In a similar
manner, we have

aN, 9.3 _
= F = C, §,5 (6.71)
ﬂzyl 0,

{.‘ i= called a cross derivative because it represent the change in yawing
ml;m'i!:t coe flicient (3 moment about te = axis) bacause of & momdime nsional
mall rate (an angular rate about the x axis) The wing and vertical mil are the
primary that contribute & C, . The contribution of the horizontal
tail i ical mnmmedhﬂwwmghemm of its smaller ares

The wing contributes i C,  in three ways that will be addressed qualita-
tively. The first contribition comes from the 1) increase in drag that resuls
from the increase in anglk of attack on the wing being mlled into, and 2)
decrease on drag that results from the decrease in angle of attack on the wing
being rolled away from. For example, a positive right wing down roll rate will
increase the angle of atack on the rght wing and decrease the amgle of atiack
on the keft wing. The increased drag on that resulis on the nght wing and
decreased drag that resuls on the left wing will provide a positive yawing
moment to the aircraft, resulting in a positive contribution to E_r. The second
contribution o E"'.- reaults from tilting of te lift vector on each wing because
of the change in angle of atack Recall that lift is defined in a direction
perpendicular to the relative wind. For ouwr example, the increase in angle of
attack on the right wing results in tilking of te lift vectr forwand, while the
decrease in angle of attack on the left wing provides an aft tilting of the lift
vecinr. The net result & a negative contribuwion o yvawing moment thus, a
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Fig: 6.11 INwostration of Eft vecbor Glting becaose of roll rebe.

negative contribution to {.‘_ The lift vector tiling effect is illustraed in Fig.
611

The final contribution may result from an asymmetrical sideforce generated
at each wing tip, Again retuming to our example with positive roll rate, the
right wing experiences higher lift (and lower upper swrface pressure) because
of the increased angle of atmck, Comversely, the left wing experiences a
decrease in lift (and higher upper surface pressure) because of the decreasad
angle of attack. As a result, there & a greaier tendency for a positive sideforce
to develop at the right wing tip as the Aow migrates from the lower surface to
the low-pressure upper surface. At the left wing tip, a lower magnitude nega-
tive sideforce develops because the pressure on the left wing upper surface is
higher {a smaller differential pressure than on the right wing). The net result
should be a positive sideforce acting through the right wing tip. If this side-
force acts behind the ¢g., a negative yawing moment results and the wing {-
sideforce effect makes a negative contribution o -|','.'|,l a5 illustrated in Fig. 6.1
If this sdeforce acts in front of the c.g. (unususl), = positive yawing moment
reaults and the wing tip sideforce effect makes a positive contribution 1o O, .
The wing tip sideforce effect & most pronounced on low aspect ratio wings
(strong wing tip vorticies) with relatively thick wing tips,

The contribution of the vertical tail o £, results from the sideforce bacase
of moll rate (F) illustrated in Fig. 6.9 and defined by Eq. (6.62). As discussad
for a positive roll rate, a negative sideforce at the wvertical tail results, This
negative sideforce produces a positive yawing moment provided the distanoe =,
iz positive (the case for low to moderale angles of attack). Thus, the contribu-
tion of the vertical tail to C, is generally positive but may be negative at high
angles of atack. If we define x, as the distance from the ¢g. to the serody-
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Fig. 6.1 INustration of wing tip sidebroe effect because of positve roll rebe.

namic center of the vertical tail, then a similar analysis & that which led © Eq
(6.65) yields an estimate for the vertical contribution & E‘_r.

e, =2 (EnE o

An edimate for the wing contribution to O, O, developad in some tests’
using wing srip theory, follows:

Cr
E"'r.. = - T

Two observations may be made regarding this estimate. First, E‘_ﬁ iz directly
proportional to the overall aircraft lift coefficient; second, the estimate assumes
that lift vector tilting is the dominant contribution based on the negative sign,

E'_r i omne of te mone difficult derivatives to estimate bacause some aincraft
components make positive contributions, others make negative contributions,
and in some cases the sign of the contribution depends on angle of attack.
Fortunately, in most applications E‘ has a relatively small nfluence on
dynamic stability characteristics,

Example 6.9
Find the pb/2Lf derivative aN, /o pb/2L7) for the F-4C at the same condi-
tions & presented in Example 6.7. O, for the F-4C is —0.036. If p i 5 deg/s,

find the perturbed yawing moment, ay.
Starting with Eq. (&71),

E:;b E_ g5 = —0036(283.2)53038.7T) = 209,114 fi - Ib/rad
EU
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To find ny we use Eq. (6.13) for only a roll rate perturbation:

ny = ﬂ'ﬂ {%I} _ 209 114 SLETCEDY i mem

2{87e)

MNotice that degrees /secpnd are comvered to adians Second to maintasin consis-
tent wnits.

E.3.3.4 Yaw rate rby1U, dedvatives. The rb/1U, derivatives consist of
HIL,.,-'H'{.H.E:,-'.‘J_UL} H-F',._,-'ih:.rﬁ,-'ﬂﬂlj, and oV o(rd /200 in Eq. (6.13). We begin
with ol fo(rd /207

il 8o i

- =— = O, 5 (6.73)
a £

2w, T2y

The derivative i called a cross derivative. It represents the change in roll-
ing moment coefficient (a moment ahouwt the x axis) due to modmdinne neional
yvaw rake (an angular rae about the = axis) The wing and vertical tail are the
primary aircraft components that contribute o i

The wing contribution & C, resuls from the yaw rate increasing the effec-
tive welocity on omne wing and decreasing the effective velocity on the ite
wing. For example, a positive nose right yaw rae will provide an a ar rate
that increases the effective velocity on the left wing and that decresses the
effective wvelocity on the rght wing, The increase in wvelocity mesuts in
increased lift on the left wing and the decrease in velocity resuls in decreased
lift on the right wing. The net result is a positive rolling moment {right wing
down). Thue, the wings make a positive contribution o G .

The wertical tail contribution to C, resuls from the change in angle of
attack (actuslly a sideslip angle) experienced by the vertical il because of
yaw rate. For example, for a positive yaw rate, the vertical tail will experience
an increase in angle of attack—acthmlly sideslip—{Aa,) on the lefi side of the
vertical tail which produces a side force (F)) in the positive y direction. This
iz illustrated in Fig. & 13,

The angle Az B the effective sidesip on the vertical tail and may be
approximated with the following equation:

A = E:: (6.74)

where x, is the distance from the c.g. o the a ¢ of the vertical wil. F, therefare
e ome s

F,=C_Axg.S. =Cr (%}F’.S. (6.75)

IARE Aircraft Stability and Control Page 139

Source from Yechout, T.R. “Introduction to Aircraft Flight Mechanics”, AIAA education
Series, 2003




L

View From Taop

l
'\Ull al Wertical Tail

Fig. 613 DNusiration of sideforce and change in angle of atieck ot the vertical bl
resutting From pasitive vaw robe.

This sideforce on the vertical tail because of yaw rate also produces a positive
rolling moment (L, ) about the center of gravity bacause it acts at =, (see Fig.
6.9 above the ¢.g. Thus

L, = Fs, =C g% {6.76)

Combining Egs. (6.75) and (6.76), and solving for C, , we have

_ o P
= (FR 6 @
Taking the partial derivative of Eg. (6.77) with respect i »,
L
§_ Xy %o
N b B

Finally, we obtain an estimate for the vertical tail contribution to C; . In non-
dimensional form

o8 20, O _ I 8
., EEAN =2 (G5 ®©.7%)
o

As seen from Eq. (6.78), the vertical kil makes a positive contribution to C
&t low to moderate valees of angle of attack where = B positive. However, at
high angles of attack, z, may be negative and then the vertical tail contribution
to C; will be negative. Bacause the wing contribution normally outweighs the
'.-:-Erﬁq:-.aj tail contribution te C;, C; is usually positive for most fight condi-
tioms.,
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The mext #b/2LN derivative to e considerad is Eile. Sork 200 0. We begin
with

aF i L )

ri =—5 = G.S (6.79)
& 3

2T, 20,

The vertical il is the major contributor to C, and the preceding analysis to
estimate C, is appropriate. We begin with the estimate of sideforce on the
vertical tail bacause of moll rate (F,) defined by Eq. {6.75).

F.-a (7 :}qﬁ, .15 (6.50)
Salving for E,

=, &,
G.=C \g 5

Taking the partial derivative with respect to r, we have

%:cl__ o) f;’ (6.81)
Finally, €, may be obtained in nondimensional form
E{Irii :} g, =c, (6.82)
20,
Combining Egs. (6.81) and (6.82), we have
C, =20 {’i i, i (6.83)

C, iz a positive derivative because a positive yaw rale resuls in a positive
sideforce on the vertical tail.

The final o205 derivative to be considerad is &, fo{rd200 ). In & similar
manner, we have

AN, 8C.g5h .
o T g (6.84)
T, T,

The derivative C, is called the yaw damping derivatve. It represents the
change in yvawing moment coefficient with respect to nondmensional yaw rate
and will always be megatve (providing a moment which opposes the direction
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of the yaw rate). C, is also an important facior in lateral-directional stability
characteristics. The wing and vertical tail are the primary components that
contribute to C,_.

The wing comtribution i C_ results from the yaw rate, increasing the affec-
tive wvelocity on ome wing and &ﬂmimg the effective velocity on the opposite
wing as discussed previcusly, A positive “nose right™ vaw rate will provide an
anpgular rate that increases the effective velocity on the left wing and decreases
the effective welocity on the might wing., The increase in velocity resulis in
increased lift and induced drag on the left wing, and the decrease in veloity
resulis in decreased lift and decreased induwced drag on the right wing. The net
reault & a negative yawing moment {nose leff). Thus, te wings make a nega-
tive contribuwtion & O, .

The vertical tail contribution o , results from the sideforce (F,) on the
vertical tail resulting from yaw rate as presented in Eq. (6.75). Referring alko
o I;L_%t._ﬁ.ll the yawing moment resulting from a positive yaw rate on the
airc i

Ny =—Fx, =G, §5b (6.85)

Combining Ege. (6.75) and {6.85) and solving for C, , we have

S
}:r. = (% (6.86)

Taking the partial derivative of Eq. (6.86) with respect o r,

o _ _ 5y, Sa
= (p)56G aasll

Finally, C, may be obmined in nondimensional form

EUL H‘:"- =, (6.88)
3{:1”1}
Combining Egs. (6.87) and (6.88), we have
G, = _EL_{:%}’T-% (6.89)

Equation (6.89) provides an estimate of the wertical tail contribution to C,,
which can also be seen to be negative. For a complete estimate of O,
wing contribution must be added o this estimate.
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Example 6.10

Estimate the yaw damping derivative, C,, for an aircraft based on the
contribution of the wertical tail The aircraft has the following chamcteristics

Cr_ = 0.08/deg, % =06, n =095 f;- —0.125

Starting with Eq. (6.89),

lﬂ-
€. = —Ci_ (%F‘f:}q_ == (—0LOENS 7. 30200.6)" (0. 950 0. 125)

G, = —0.392

Tastice theat 'E:.._ has been convertad &y “per radian™ to keep CconEisent undits.

£.3.3.5 &, dernwalivas. The &, derivalives consist of al ,f, dF, ,-'H'-E_,, ansd

oN, /o, in Eq. (6.13). Using a similar development & that for T.h.e previous
derivatives, we have

L, _#C, .
H'E., T A,

), B a primary control derivative and is abo called the alleron control

power. It was discussed in Sec. 5.5.22. The sign of C posidve with our
ilE_‘ﬂ convention. Thus, a positive aileron deflection -[nm-:'ﬁlr_l.-' right aileron trail-

ing edge up/left aileron trailing edge down) will produce a positive rolling
Oy T

&F',.',-'H'E_, i developed in a similar manner.

5b = Cy, §15b {6.90)

aF,  aC
4, - _ -
5= wm = G @S (6.91)

E:"-l. iz the change in sideforce coefficient resulting from an aileron defaction.
It generally has a negligible value, It may have a negative vahe for stustions
where differential horizontal tail is uwsed ®© generate molling moment as
discussed in Sec. 55.1.

Finally, the development of aN, /o, follows the same approach

BNy _ BC,
a5 @b,

v 5B (6.92)

{.'.'_‘__ i a crosscomirel derbratve that was discussed in Sec. 5.53.2. If it is
positive, the aircraft exhibits proverse yaw. More typically, it is negative, indi-
cating that adverse yvaw is generated a5 a result of an aileron input
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5.3.3.6 &, dermvatves, The 4, derivatives are ol fod,, oF, ,-'H and
diVy fod, in Eq. (6.13). Using the same approach as with the §, dm'-ah'.-ea.

al, aG.
H:_—':'glsz: Cy (6.93)

C, is a cross-control derdvatve that was discussed in Sec. 55.23. It is
usually positive becase the rudder i nomally above the r-body axis.

i, fad, is developed in a similar manner.

3F,
= E’_ils =, :5 (6.94)

"

iz the change in sideforce coefficient resulting from & redder deflection.
I was discussed in Sec. 5.5.1. and generally has a positive valee because a
positive redder deflection will generate a sideforce along the positive ¥ axis.

Finally, the development of dN, /od, follows the same spproach.

o

-

aN,  B8C, _ _
BNa _ E::.,L.ﬁ: G, G150 (6.95)

Cn, B & primary control derbvative and i also called the rudder control

power, It was discussed in Sec. 5.53.3. The sign of E"‘# is megallve with owr
sign convention. Thus, a positive rudder deflection (railing edge left) will
produce a negative yawing moment

B33 7 Sr..rﬂmar}r. ‘We mew defime the lateral-directional forces =nd
momens from Eq. (6.13) using the derivatives developed in Secs. 63.3.1-
6.3.3.6. Thiz recasting of the aguations will use matrix format and Egs (654
a.al), (abb), (6.71), (6.73), (6.79), (6.84), and (6.90—6.95), resulting in

B
.. Bb
_ L s,
LIE
» c, €, G G G ©. 7| ;;
= :q = | &, E',._ U "::-.L "::u, | (6.946)
F1- E‘_‘ E‘_- E:.,__ Ca E‘_‘_ E‘_‘r rib
1 ||T__. 1 ELTL
M) .
T 5.
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LINEARIZING THE EQUATIONS OF MOTION 278

Tahle 6.2 Summary of labermbdirectiomm] derivatiees

Deanvative Taane Mormal sign
Eé.l Latera] static sishility demvatie -
iy Hane -
:: Thmsctiomal sixtic siwhility dernative +
E'!.I Cruzg.simady derivative == 1
I'::,‘ Cruzg.simady derivative == 1
I':'_lll Cruzg.simady derivative == 1
I':.!r Ruall demping demivative -
E:.,' HMone -
I':_r Croes derivative + ar —
Cr Croms derivadive +
G HMaon= 4
Co Yaw dampmg deTivative -
EJ‘. Adleron aomitral poeer 4
I'::,‘_ Hane ==
ay, Cross comiro] dervat ve (provess or adveases yaw) + or —
EJ-'.- Croms ool derivative 4
I':H_ e +
iy Rudder comtrol pareer -

The advantage of Eg. (6.96) over Eg. (6.13) s that the lateral-dinectionsal
perturbed forces and moments are now expressed in terms of common “aero™
derivatives such as Cp, C, . and O, . The value of these derivatives can be
estimated with anahytical or experimental £chnigues Remember that each deri-
vative in Eq. (6.96) is dimensionless—for example, C iz the abbreviaed form
of &0, ek 20N). Table 62 summarizes the derivatives discussed for the
perturbed lateral-directional force and moment estimates,

64 First-Order Approximation of Perturbed Thrust Forces and
Moments

We will now focus on the perturbed thrust force and moment terms (auch as
Sy and my) in Egs. (606) and (& 7). These represent the perturbed change in a
thrust force or moment that results from a nonzero vale of a perturbation vari-
able like . We begin with the sssumption that these perturbed thrust terms are
only a function of @, & and 8 which & generally the case but does neglect
effects from p, g, r, & [ and the control deflections, The kemgitudinsl
perturbed thrust forces and moment can thus be represented wing a Taylor
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series and the nondimensional perturbed longteding] wrables (defined along
the x, v, and = sahility axis) as

aF aF.
fr,=—= {:Lirljl_ — (6.97)
A7)
-y = E""'::T {:Lirl;']_%u (6.98)
%)
aF aFy .
== {:Liljl—ﬁr“ =)
{)

The kngitudinal threst forces and moment can be expressed in coefhocient
form as

Fr. =Cr§i (6.100)
M, =C,__§,5 (6.101)
Fp =Cpr§,5 (6.102)

The lateral-directional perturbed thrust force and moments can be represented
in & amilar manner as a functon of

Iy = ﬁﬁl (6. 103)
A,

fr. = Er;ﬂ (6. 104)
-

Ry = ﬁrﬁl {6.105)

The lkeral-directional thrust force and moments can be expressed in coeffAcient
form as

Ly =0C, q,5 (6. 106)
Fr =Cpins (6.107)
Ny = Co 150 (6. 108)

4.1 Longitudinal Perturbed Thrust Fomce and Moment Derivalives

We will next amabhyze each of the partial derivative s in Egs (6.97-6.99)
50 that they may be expressed with common thrust coeffcient derivatives.
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E4.1.1 w/U) derivatives. The w/U, derivatives consist of aFr fa{w/L0),
oMy M/ U), and &Fp /o{u/L0) in Egs. (697699 We will Begin with
aFy fu/U). Fr & defined along the body-fived smbility x axis as discussed
in Secs. 6.3.2. and 6.3.2.1. Using a similar approach as that for 8F, fo(u/Lf) in
Sec. 63,21, we have

aF oCy _ g - -
ﬁ:- = ?qu +Cr 8 ﬁ' =Cr ¥+ E'E:I:Iil_s (6. 10:9)
U, U,

In comparing Eq. (6.109) to Eq. (6.19), notice the similarities with the excep-
tion of the negative zign in Eq. (6.19). This results because drag is defined as
positive in the negative x direction while thrust is defined as positive in the
positive x direction. For gliders or power-off flight, Cp and Oy are equal to
zero and thus &, /du/T) becomes zerp. Estimates of Cp "and Cy  for
powered cases are dependent of the type ut'pmpuhiunij-'ﬂe;nmad in the
aircraft,

The mext w/Lf, derivative to be considered is oMy /w0 Using a similar
approach as that for o/ a(u/T ) in Sec. 6.3.2.1, we have

|

E-T—r = C..,j'LS:?-I- E_n.‘ii:{zilj (6. 110)
th
and, in combinad form
ol
3._’1[ = (Cu,, +2C, 152 (6.111)
73

For steady-state trimmed flight, the total pitching moment acting on the aircraft
should be zero, Thus, the sum of the steady-staie thrust pitching moment and
steady-state aerodynamic pitching moment [referring to Eq. (6.22)] should be

Cup, + Cpy =0 (@ trim 6.112)
Combining Egs. (6.22), (6.111), and (6.112), we have

&;fﬁ — (€, +C, 4,5 (6.113)
[

The derivative E"r. has a negligible value for sitatons where the thrust vector
passes through the center of grawvity.

IARE Aircraft Stability and Control Page 147

Source from Yechout, T.R. “Introduction to Aircraft Flight Mechanics”, AIAA education
Series, 2003




UNIT -V
AIRCRAFT DYNAMIC STABILITY

Introduction

Aircraft dynamic stability focuses on the time history of aircraft motion after the aircraft is disturbed
from an equilibrium or trim condition. This motion may be first order (exponential response) or second
order (oscillatory response), and will have either positive dynamic stability (aircraft returns to the trim
condition as time goes to infinity), neutral dynamic stability (aircraft neither returns to trim nor
diverges further from the disturbed condition), or dynamic instability (aircraft diverges from the trim
condition and the disturbed condition as time goes to infinity). The study of dynamic stability is
important to understanding aircraft handling qualities and the design features that make an airplane fly
well or not as well while performing specific mission tasks. The differential equations that define the

aircraft equations of motion (EOM) form the starting point for the study of dynamic stability.

Mass—Spring—Damper System and Classical Solutions of Ordinary Differential
Equations

The mass—spring—damper system illustrated in Fig. 5.1 provides a starting point for analysis of system dynamics
and aircraft dynamic stability. This is an excellent model to begin the understanding of dynamic response.
We will first develop an expression for the sum of forces in the vertical direction. Notice that xotb is defined as

positive for an upward displacement and that the zero position is chosen as the point where the system is initially

d*x
PR =m

X 'Iil'a

at rest or at equilibrium. We know that 5.1

-

.:‘:-::- K 1 5pring Constant)

Mnss J alfh

L]

' {Damping Copstant]

Fig 5.1 Mass—spring—damper system
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There are two forces acting on the mass, the damping force, and the spring force. For the damping or frictional
force (Ff), this can be approximated by a linear relationship of damping force as a function of velocity or dx=dt
(see Fig. 5.2). A damper can be thought of as a ‘‘shock absorber’” with a piston moving up and down inside a
cylinder. The piston is immersed in a fluid and the fluid is displaced through a small orifice to provide a

resistance force directly proportional to the velocity of the piston. This resistance force (Ff) can be expressed as

Fe=CF

where C is the slope in Fig. 5.2. The spring force (Fs) is directly proportional to the displacement (x) of the mass
and can be represented as

'F_r = Kx
where K is the spring constant. If the mass is displaced in the positive x direction, both the damping

and spring forces act in a direction opposite to this displacement and can be represented by

Fy+F,= —CV —Kx

52
dx
= T
------- 53
Dl .
|.Ir '-.__."F--.
Frichona -
Fiwce ~
1] . .
, P Slope =1
ra
-
-
lr'--r
velocity of Piston (1)
Fig. 5.2 Damper relationship
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/ 5.4

which is the differential equation for the mass—spring—damper system with zero initial displacement (x
= 0). If we initially stretch the spring from its original position by a distance y as shown in Fig. 5.3, we
build in a forcing function that must be added to Eq. (5.4). Because the upper ‘‘tie down’’ point is
moved up by a distance y to achieve this stretch or preload, the preload has a positive sign and a
magnitude of Ky. It can be conveniently added to the right side of Eq. (5.4) to obtain

m(d '1'} + r:."[iﬂ) + Kx = Ky

dr dr, 5.5

This is the differential equation for the spring—mass—damper system with a preload as shown. At this
point, we should observe that if the mass is free to move, it will obtain a steady-state condition (a new
equilibrium location) when d2x=dt2 and dx=dt equal zero; and the new equilibrium position will be x
=y. Now that the differential equation for the spring—mass—damper system has been defined, we will
review classical approaches to solving ordinary differential equations of this type. Keep in mind that

Eqg. (5.5) is also representative of aircraft motion and that is why we are investigating it in depth.

I‘- o Ciriginal

Pasificnm

AN
’ "

Mnse J ol

i

Fig.5.3. Adding a forcing function to the spring—mass—damper system

First-Order Systems
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A special case of Eqg. (5.5), which we will consider first, addresses a spring—mass—damper system
where the mass is very small or negligible compared to the size of the spring and damper. We will call
such a system a massless or first-order (referring to the order of the highest derivative) system. The
following differential equation results when the mass is set equal to zero.

£ 5.6

To solve this differential equation, we will first describe the method of differential operators where P is

defined as the differential operator, d/dt, so that

Py = & Piy = d : i [.1' dt

We will first attack the homogeneous form (forcing function equal to zero) of Eq. (5.6),

&
F(EI} LK =0
£ — 5.7

Substituting in the differential operator, P, Eq. (5.7) becomes
CPx4Kx=10
We then solve for P, which now becomes a root of the equation,

(CP4+ Kx=10
F=-K/C)

The homogeneous solution is then of the form

0t} = Cpe™ = C, & FKiCH
7.8

where C1 is determined from initial conditions. The homogeneous solution will also be called the
transient solution when we are dealing with aircraft response.

Example 5.1
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Solve the following first-order differential equation

'|J.'
I‘+z.x-=u

subjected to the following initial condition: x(0) = 1

Solution:
Pr42x =0
(P4 2ix =10
P==2
wf) = Ce™
Using the initial condition o(0) = | to evaluate C|
1 =C,
and
of) = =¥

is the solution, or time response.

The solution is graphed in Fig. 5.4. Notice that it starts off at a value of one at time equal to zero and
exponentially decays to zero. It is also important to note that a first-order system has a first order or
exponential transient response (no oscillations). Next, we will look at solving a first-order
nonhomogeneous differential equation like Eg. (5.6). A forcing function is included with a
nonhomogeneous differential equation and the solution is called the nonhomogeneous or particular
solution. It is also called the steady-state solution when we are dealing with aircraft response. To
achieve a solution using differential operators, we must assume a form of the solution based on the
form of the forcing function as outlined in Table 5.1. The first step in solving a nonhomogeneous
differential equation involves setting the forcing function to zero and obtaining the homogeneous
solution. Next, the appropriate assumed solution is input into the nonhomogeneous

differential equation so that the constants A, B, C, (as appropriate) can be determined and the
nonhomogeneous solution defined. Finally, the homogeneous and honhomogeneous are added together

to obtain the total solution. Example 5.2 will help clarify these steps.
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Line:
Fig. 5.4 Transient time response of a first-order differential equation
Table 5.1 Assumed solutions for nonhomogeneous differential equations
S —
Forcing function Assumad solution
K A
Ki At + B
K A + Bt +C
K zinwy A sinwr + B coswr
EXAMPLE 5.2
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Solve the following first-order differential equation:
d;l'.
EE F+AIr=10H

subject to the Bllowing initial condition: o0} = 0
Homogeneous (Transient) Solution:

2Px43x =0
P=-3;2

xylt) = Cyel 32
(Homogeneous Solution)
Monhomogeneous (Steady-State) Solution:
Asgsume a steadv-state solution of the form wof) = 4 becanse the forcing
function is a constant.
Substitute v () = 4 into the ongnal differential equation:
2(0)+34 =06
A=2
And the nonhomogeneous solution is:
xeplt) =2
The forcing function should be thought of as a constant equal to 2 with the 6
on the right-hand side of the diferential equation being equal to the spring
constant (K = 3) times the forcing function.

The total solution is the combination of the homogeneous and nonhomo-
geneous solutions:

xt) = ']'-J:{'r]' <+ ']'-.'nk{'r]' = C]-E": ETF 42

To evaluate the constant C;, we use the mtial condition x(0) =0

0=C)+2
C = =2
and
2t) = =273 L2
(83

x(f) = 2(1 = &3

becomes the total soluton.

Time constant
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We will next introduce the important concept of Time Constant (t). If we return to Eq. (7.6) and solve

it in general form for an initial condition of x30P %2 0, we obtain

o) = p(1 = KOy

Figure 5.6 presents a graph of the time response. Notice that the steady-state value is y, which equates
to the value of the displacement of the forcing function. We will begin referring to a constant forcing
function as a step input. Notice also the exponential rise to achieve the steady-state value. The lag time
associated with this rise to the steady-state value is an important consideration in determining the
acceptability of the response from an aircraft handling qualities standpoint. This lag time is typically

guantified with the time constant (t),

fime
Fig.5.5. Time response for example 5.2
Y .
=
oo T
b3y 7 B
b
T L
Fog 5.5 Generalized response of first order system
Time to half and double amplitude
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Another measure of the lag time associated with a systems response is the time to half amplitude
(T1=2). Referring to Fig. 5.6, this is simply the time it takes to achieve 50% of the steady state value. It
can be easily shown that

T2 = t(ln2) = 0.6931

For unstable first order systems (P > 0), a measure used as an indication of the instability is the time to
double amplitude (T2). T2 is the time it takes for the response to achieve twice the amplitude of an

input disturbance. It can be found using

In2 0.693
P P
---5.11
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7.1.2 Second-Order Systems

We now meturn to Eq. (7.5) in its entirety for a spring—mass—damper system
where the mass provides significant mertial effects. Equation (7.5) is a second-
order differential equation (refernng to the highest-order denvative) or simply a
second-onder system. It becomes

M3+ Ci+ Kx =Ky

. C. K K
E+—x+—x=—y (7.12)

4 4 4

To solve Eq. (7.12), we will again use the method of differential operators on
the homogeneous differential equation to obtamn the transient solution or transi-
ent response.

(MP*+ CP+Kpx=0

We can then solve for the roots (P) of this equation uwsing the quadmtic
formula.

b :‘_":I:-.,-“ET—MGH
2T M M

Three cases must be considersd based on the sign of the expression under the
mdical.
Case 1: Two Real Unequal Roots or CF = 4KM

This results in an overdamped system (no oscillations) with a general solu-
tion of the form

w(t) = Cy ™t 4 Cre™ (7.13)
The constants C; and C; must be svaluated based on the mitial conditions.
Case 2 Two Real Repeated Roots or C° = 4KM

This results in a eritically damped swvitem (no oscillations) with a geneml
solution of the form

1t) = Cye™ + Cyre™ (7.14)

Again, the constants C) and O3 must be evaluated based on initial conditions.
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Case 3: Two Complex Conjugate Roots or 4KM = C°
This results in an underdamped (with oscillations) system The roots are

" _E
P]IE=—2if:|:I 4}“?” =ﬂ:|:]'.||]‘

and the general solution is of the form

xit) = € [Cy sinbt 4 Cz cos bi)

(6.
ot} = Cye™ sin(bt + ) (7.15)
whens
|Gl =/ CE+C3
and

Ca
o= ()

Motice n Eq. (7.15) that the real part of the root (g) determines the exponential
decay (damping) portion of the tme response and that the imagmary part of
the mot (&) is the frequency of the oscillation. The phase angle () can be
thought of for now as a lag between an imput and output. Case 3 is typical of
three dvnamic modes of motion for most aircraft (the short period, the phugoid,
and the dutch moll modes), which we will discuss in detail later.

7.1.2.1 Damping ratio and natural frequency. We can recast Bg. (7.12)
in temms of two new parametens: damping mtio () and natural frequency (o).
These pammeters have physical meaning for Case 3 and lead directly to the time
solutiom for common inputs such as steps and mmpulses.

F 4+ 2k + wyr = wly (7.16)

The damping ratio provides an mdication of the system damping and wall fll
between —1 and 1 for Case 3. For stable systems, the damping ratio will be
between 0 and 1. For this case, the higher the damping ratio, the more damp-
img is present in the svstem. Figure 7.7 presents a fmily of second order
msponses to a unit step (v = 1) mput, which show the mfluence of damping
mtio. Notice that the number of overshools fundershoots varies inmversely with
the damping ratio.

The natural frequency is the frequency (in md/s) that the system would
oscillate at if there were no damping It mepresents the highest frequency that
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Dimese Limne

fimneg

iimne Lime

Fig. 7.7 Unit step responses for different damping ratios.

the swystemn is capable of, but it is not the frequency that the system actually
oscillates at if dampimg is present. For the mass—spring—damper systemn,
asy = SEJH.

7.1.2.2 Damped freguency. The damped frequency (o ;,) represents the
frequency (in rad/s) that the system actually oscillates at with damping present.

Returning to Eq. (7.16), we can use the quadratic formula to solve for the roots of
the homogeneous form of the equation.

P,y = —Jay % iwgy1 — % = —fwy tioy =atib TA7)
whens
u:ﬂ=u:H1.fl—§z=EHrnpﬂdFrequenn}r (7.18)

7.1.2.3 Time consfani. The time constant (1) for a second order system
can be found by examining the real part of the roots (—={w,) in Eq. (7.17) and
mecalling our discussion in Sec. 7.1.1.1, The time constant (1) for the generalized
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case of By. (7.16) becomes

|
Canyg

T =

(7.19)

This & zimilar to the way we computed the time constant for a firstorder
syskem (r = —1/P). Notice that the larger the [wy, the smaller « and the fasier
the rezponse,

7.12.4 Penodof oscilation. The peried of oscillation (T) for a second-
order sysem is the ime it mles between consecutive peaks of an oscillation. The

pericd is inversely proportional to the damped frequency and is defined by

=" el |
v~ (7200
where o must be in units of adisns/ second.
The time response for the homogeneous case of Eq. (7.16) &
i) = Cye ™ sinfup, 1 + ) {7.21)

Figure 7.8 illustrates this response. The system has been initially disturbed by
an impulse input (which may be thought of a3 a very short duration spike
input that excies the sysem dymamics). The figure also illustrates several of
the concepts just discussed.

The steady-state (nonhomogenecus) solution will be defined next for Eq

(7.16). Because the forcing function, @'y, & a constant we can sssume the
form of the solution as

il = A
'._h— T 1 ;Il-r:;ﬂ i,
” -lrf__ (1 —&3.2%%) O,
O, sim g
JIF\ ;;_-:-;,-'-—1"1:;_': tirm

Fig. 78 Second-order time response.
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There fore,

a4 dA
A=y

We will assume a unit step input (y=1) in most cases so the particular
{(steady solution) s

Xl =1
The wial saluwion then becomes

0D = X e () & 5{1)

) = 1 4+ Oy gindon ot + ) (7.22)

Please note that the C5 in Eq. (7.22) will typically not have the same value as
the C; in Eg. (7.15).

Example 7.3
Find the time solution for the following differential aguation:

= L Sk Xr =25

First, we apply the generalized form for a second-order differential equation
Eqg. (7.16):

£ + myie+ mipx = oy

The first thing we notice & the unit step input (¥ = 1). Next, we can deter-
mine the values of natiral frequency, damping ratio, and damped frequency:

wy =425 =5mdfs Mo, =5=L=105
i = angy| 1 — £ = 4.33 radfs

We can then input these values into the generalized solution from Eq. (7.20)
for a second-order differential equation with a unit step input

i) = 1 +0e dnfd 330+ @)
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We still need to determine O and o, which can be evahiaied from indtial
conditions and & relationship that we will develop in the next section for .

72 Root Representation Using the Complex Plane
The roats of Eq (7. 16) were presentad in Eq (7.17) and are repeated here.

P2 =—Llwy £ iwp =a=x ik

These meois can be represented on & complex plane as shown in Fig. 7.9 The
complex plane plos the real pant of the root on the horzonts] axis and the
i ginary part of the oot on the vertical axis.

From trigomnosmetry

| — Qo] | — eyl
r

CinE i =
I'ﬁ 0l

<

{

$=cos' [ (7.23)

It iz good to keep o in units of radians, a5 we will soon see. Also

TP T

mng = =
| —{wl £
- . ank,, DINTAGINARY |
-G i sl —
PO why = "5""--'|I| -z ¢ is the saome ¢ oed in.IJ'l-.'
. phies angle sl wlion ol
‘ Eq. {7.21F and {7.22}.
)

alBEAL)

B

= ——

Fig. 7.9 Hoot representation vsing the complex plane.
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Therefore, if we know [ we can find ¢ for Egs. (7.21) and (7.22). This leaves
only O3 to be evalusted. To do this we can ssswme the inital conditions of
o 0) =H0) =0, and use Eq. (7.22).

o0) = 1+ Gy 1)sing =0

to obtain

Also, we know that

X)) = —Cylmye™ " sin{apd + @)+ Cyape™ " cos{apt + @)
) = —Cylmyg dn g+ Cympoosd =0

singg  ap, _m_.,'.-..-'l—E! _-..-'l—?_

cos g [y Cay <

tan ¢

Thiz i& the same result as found from the complex plane trigonometry, which
proves that the ¢s are the same,

Because C, = —1/sing and sin ¢ = /1 — [7,

o1

V1 =r2

Therefore, for an underdamped second-order system with a siep input of
magnitsde y, the time response is

'_,—{.u..,-.!
x(f) = ¥| 1| — —=ssin{mpl + @) (7.24)
( vi-7 )

This is wech nicer than solving for the transient and Seady-state solutions and
evaluating the constants as in Example 7.2, All we need to determine from the
original differential equation i w,, [, and . Radians are compatible units for
¢ in Eq. (7.24) because wps will have units of radians Use of Eq. (7.24) is
illustrated in Example 7.4
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Example 7.4

Find the time response of the following differential equation with zero
initial conditions:

¥+ S5k 25x =125,

dany = 5 radfs,
L =05,
y=1

wp =433 rad/s from Example 7.3
d = cos™ (D) = cos™'(0.5) = 60 deg =3

substituting int> (Eq. 7.24) vields

() =1-—1. lsse-Mm(aaaH ;_'j

Notice the difference in effort required between Example 7.2 and 7.4
Remember that the solution using Eq. (7.24) & for a sysiem with —1 = [ =1
and a sep input of magnitude . WL =1 or{ < —1, the respmnses are aperic-
dic (exponential without oscillations) as discussed in Cases 1 and I1L

The stablity of a sysem can be determined directly from loeoking at the
roots of the differential equation. If the root i real and has a negative valee, it
is stable [for example, Py = —2 and x(f) = ¢ e, which decays @ 0 as time
goes W infinity]. If the root iz real and positive, the response is unstable
[P, =2 = of = Ce®, which grows without bounds with time]. For complex
roots, it is the real part of the root that determines smbility. For Py, = a X ib,
if @ <0 the sysiem is stable. In the form P, = —Jlmy = jmy, this occurs
when £ = 0, If @ = 0, the sysiem & unstable, which occurs when [ < ), There-
fore, if the reots oocur to the left of the imaginary axis (the left half of the
complex plane) the system is stable. Similarly, if the roots are & the right of
the imaginary axis (£ = 0), the system is unstable. If the roots are on the
imaginary axis ([ =0), the system iz neutrally stable (undamped). Time
response characteristics for an impulke input are illustrated in Fig. 7.10 for
various roeot locations Notice the changes in damped frequency and time
ComEtEnt,

Examples 7.5 and 7.6 further illustrate our simplified approach for solving
second-order linear differential equations. Remember that the general form of
the differential equation is

£+ mk + wipx = ajy

Depending on the valee of {, the solution will be in the form of Case 1, Case
2, or Case 3.
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i,

Fig.- .10 Influence of complex plane root location on the transient response to an

mpulse input.
Exampla 7.5
Find the time response for the follewing syskem:
¥F+lle+1l6e=32; x)=0 x0I=0
Ypplying the general form of a second-order differential equation
¥4+ Mo k4 anx = wiyy
ve have

dri, =16 =4 radfs
2oy = 10 = 2[{d) = 10= L = 125

Secause [ > 1 we know that the solution & of the form of Case 1 (2 real
mequaal rosois). There fore, we nead to solve for the moois:

—10 = ST — A1) 16)
= —5§£3=—-2 —§
A1)

Pra=
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The homogenaows (transient soluwion) is:
x_ A = Cle™™ £ Ce™

T find the steady-state solwion, assume x () — A4

0 0
A4 1ol s 164 — 32— 4 —2

We then have

) = X 1)+ o) = 2 4+ Cpe > 4 Ge ™

o0) = 0=24+C, +C,

) = =20 e e
W)= 0= -2, — B = O = —45
2
E—JEQ—EE:‘}% Eﬂ =3—
B
E| =—j

Substituting back in, te time response e omes
B 2 .2 &
) =2 — 3¢ +ge

This respeodse has tads time oonsts s

) = ———=——=0.5 s

{
I
|
{
I
|
{
)
t:.‘

Ta

Exampla T.6
Fimed the titne mespeonse for the following sysiein

Sk 425 =T7% x0)=0, H0)=0
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Uszing the general form of a second-order differential equation, we have

a, =25 =5 madfs:  y=273 because wl = 2%

2y =53=2UFN=53={=03

iy = a1 — 2 =5,|,-"1_—-[ﬂ.5:F — 4.333mad/fs
it

= cos™' [ =cos™'(0.5) = 60 deg = 5

Because —1 < = | and the i is & i of magnitude 3 (¥ = 3), the
solution is of the form Fﬁmt-:lpm Eq {“s'.'t'?d“_lmm

P
o) =y | — ———=sinfwpt + ) (Case 3)
[ J-goo ]
Substituting in the appropriate values

asKs .
o =3[1 —r':—_sin{-d._'i_'i_'u -%j

J1— 0.5

and the solution or time response is:
i) = 3[1 — 115575 sin 43330+ :_1—')]

Racall that the ropis are

Py =—Lmy T impg
— 25+ {433

which could easily be plotied on the complex plane. The time constant is

1 1
P Ty 25 ®

As g reminder, if L =—1 or £ = 1, then the solution would be of the form of
Casa 2,

73 Transforming the Linearized EOM to the Laplace Domain

Another commamn usad in solving differential ions & theat of
Laplace transforms. We will begin with a short review of lace transform
technigues and then apply these technigues & the six linearized differential
equations of motion for the aircraft The differential operator, P, discussed in
Sec. 7.1.1.1, is analogous to the Laplace varable, 5. The insight gained with
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the rooks of ransformed differential equations obtained weing the differential
operaior will directly transfer to the roots obtined with the Laplace vanable, 5.

73.1 Laplace Transforms

It is assumed that the reader has gained familiarity with soletion of differen-
tial equations using Laplace transforms from a previous course. It is the intent
of this text v simply review highlights of the Laplace method. Simply stated
the Laplace methed tramsforms a linesr differential equation from the time
domain {the derivatives are with respect to time) int an algebraic aquation in
the Laplace domain where the variable s is used. We will denote this Laplace
transform operation with the symbol L. The methods of algebra are then used
in a sraightforward manner to solve for the parameter of inerest. The resulting

tion iz transformed back to the time domain, referred to a5 an inverse
Laplace ransform operation and denoted with the symbol L-! so that the time
regponse can be obtained. By convention, small letters are used to represent
functions of time and upper case letters are used to represent their Laplace
transforms.

LN = Fis)

L~ [F&] =00

The Laplace transform of the derivative of a function f{r) is given by

LR ] = sF(s) — A1)

Where (0)=0{) at + =0. This iz conmaonly called an initdal condition, A
socond derivative is given by

LI /'] = £ F{8) — g(0) — 0
Higher-order derivatives follow in a similar fashion.

F3.1.1 Standardized inputs. We will be concerned with primarly two
types of inputs or forcing functions: the unit impulse [Hr)] and the unit step
[1{£)]. The unit mpulse is defined as occwring at r = 0, and having zero duration,
infinite magnitude, and a srength of unity, When considered as an input to the
aircraft, test pilots refer to an impulse as a stick rap. The aircraft is rimmed and
the stick & rapidly moved forward or aft from the timmed position and then
returned to the trimmead position, This input can be thought of 25 basically hitting
or rapping the stick and allow ing it to retum to the trim position. A unit impulse
i ilustrated in Fig. 7.11.

IARE Aircraft Stability and Control Page 168

Source from Yechout, T.R. “Introduction to Aircraft Flight Mechanics”, AIAA education
Series, 2003




} nimnee:

Fig. 711 Unit impulse.

A unit sep i defined by the following:
0 for ¢ < O | fir £ = )

A it & iz illustrated in Fig. 7.12. A test pilot will input a sep input
rapidly tmi‘ing the stick Em'l.l.';afd or aft from ﬂfe trimmed postion mfd }mh:libnz
it Of course, es pilot inputs only approximaie the ideal unit impulse and it
step inpuis. These approximations are generally sufficient to excite the dy-
namics and response of the aircrafl, 50 we have a convenient way & compare
the ideal world of the unit impulse and unit step to the practical world of the
aircraft in Aight.
The Laplace ransform of a unit impulse is

HHn] =1
and for a unit step

U =1/«

f.3.1.2 Laplace tables. To simplify ransforming expressions from the
time domain to the Laplice domain and the taking of the inverse transform to go
from the Laplace domain back to the time domain, we will rely on a table of
Laplace transforms. Such a bl & presented in Appendix E, which contains
moat of the expressione we will nead. More detniled tables are available in a
variety of references

7.3.1.3 Soking diferentiadd equations usng Laplace transforms.
Laplace transforms are used to solve differential equations through a three-step

il Tmae

Fig. 7.1 Unit step
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process.  First, the Laplace transform of the differential equation is obtained;
second, the resulting equation is solved algebraically for the unknown variable/
variables; and third, the inverse Laplace transform of each variable is obtained
resulting in the desired time solution of the original differential equation. A
simple example will illustrate this method.

Example 7.7
Find the time response for the following differential equation:

=6, of0)=x0)=0

Taking the Laplace transform,

SX(5) =6/
Salving for X{s),

X(5) = 65
and mking the inverse Laplace using #8 in Appendix E,

o) =3

which is the time solution,

7.3.1.4 Transfer functions and the characteristic equation. A transfer
function is defined as the ratio of Laplace transforms of ouwiput to input. Ouiputs
for our applications will typically be motion variables such a5 w, angle of attack,
and vaw rae, which describe velocities, angles, or angular rates of the aircraft
for our applications will be aircrafl control surface deflections such as
elevator deflection (4,) or aileron deflection (4,). In simple terms

Transfer function = L[%]

=

transfer function will be expressed in Laplace notation and will be obtained
from the Laplace form of the aircraft equations of motion, Example 7.8 illus-

how a transfer function is chiined from a differential equation and the
ility it has for a variety of inpuis.

Example 7.8
Find the transfer function ¢fs)/8,(5) for the following simplified differential
equation defining roll angle response. Asaume zero initial conditions.

4

&+ 0. 7044 = 0.0375,
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Taking the Laplace transform
£ dis) + 0. Wdsp(s) = 0.0378,(5)
Solving for ods)

00375 ()
) = T anTea

and obtaining the transfer function

o5 0.037
8 050 sz + 0.0704)

For an impulse input, §,(s) =1

0.037
5 + 0.0704)

o 5) =

and, mking the inverse Laplace transform using the Laplace tables we have the
time response

B0 = (1 — e

For a unit step input, §.(5) = 1 /s

0.037
M = e 00704)
and the time response is
007 _ o
d{r) _m_—{ﬂmm: | 4 o HNHe

The charactertc equatdon of a transfer function is obtained by setting the
polynomial in the denominatr of the tramfer function equal © zero., For
Example 7.8, the characierigic equation is

5+ 0.0704) =0 (7.25)

The root of a chamacteristic equation will define the overall system dynamic
characteristics such as time constant (for fist-order systems), and damping
ratio and nateral frequency (for second-order systems) as discussed in Sec
T.1.2, Far Eq. (7.23), the root £ =0 leads to a steady atate value term in the
time soltion, and the root 5 = —0.07T04 leads o & time constant of 1 /00704 s
and 2 & "™ o in the time solution.
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7.3.1.5 Partial Faction expansion. A key sep in using Laplace trans-
forms to solve differential equations involves using the Laplace transform tables
to find inverse transforms. It is impossible to cover every polential case in a mble,
but the methed of partial fractions can aid in breaking up involved transfer
functions into pieces, which may be included in a standard table. This text will
only review the case of a transfer function with nonrepeated real rook in the
characteristic equation A more detailed coverage of partial fraction expansion
technigues & included in most engineering mathematics extbooks such as
Advanced Engineering Mathematcs, by Erwin Kreyszig,

Consider the ransfer function:

Xis) 842 . s+ 2
Fisg) S +82 1912 (s+3)s+4s+1)

It can be rewritien using a partial fraction expansion as

atr{'i':l_ .-'!|_ .-'!2 .-'!_:l
Fis) —F 43 s44 41

To evahmie the constants 4, 4,, and 4,, which are ako called residues, we
use the following approach:

A = s+ 2 . |
"TEras+0]_, 2

g — s+ 2 B 2
P T s+ -y 3

e — g§4+2 B |
T EE3s A, 8

The partial fraction representation of the transfer function then becomes

Xe)_ ¥ . -% &
Fis) £+3 i+4 s+ 1

Each of the partial fraction expressions can be transformed to the time domain
using the common first-order ransform found in all Laplace tables.

K

For this mn‘ple. we then have

Xy 1 . 2 4, 1 _,
—— =& ——# —a
W0 2 3 T8
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The residues {4,, A;, and 4;) abo provide a weighting of the relative magni-
tude of each component of the re ,

Slightly modified partial fraction approaches are defined in mathematics
texts for characterisic equation roots, which are repeasted real numbers
complex conjugates, and a repeated pair of complex conjugates.

2306 Intial and fing vave theorems.  The initial value of a function

{at ¢ =10) can be found if it Laplace ransform is known using the following
theorem:

S0 ssg = lim |, o 5F 5]

For example, comsider the function

fi=e*

|
ey =

&3

Applying the inital value theorem,

lim |,_, g#~ = lim | ”{s—ta} =1 =™

Thizs theorem is useful in verfying the accuracy of Laphee ransforms because
the initial conditions ane nomally onoesn,

The seady-state (f — o0) value of a time domain function can be found if
its lace transform is known and if it has a fAnite steady-state value using
the following theore me

lim | e, A1) = lim |, o8 F{s)

Thiz theorem does not apply i unstsble functions or undsmped sinusosidal
functions. As an example of application of this theorem, consider the Laplace
oS fiowrmn

|
M =%+D

To find the steady-state valee of x 3t F = o0, we can apply the final value theo-
rem

L
|I:I'I'I.L_m.!|:{1:l = HmIHﬁ{m} =1= _t{ﬂl::l:l
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This result can be checked using

Heol=1—e"=1

The final value value theorem provides an easy method i find the sieady-state
value of a Laplace expression.

7-3.2 Longitudinal Linearized EOM in Laplace Form

We will now use the power of Laplace transforms to recast the aircraft
EOM developed in Sec. 6.5. The equations become somewhat long but the
concepts are not complex. Equation (6. 127), the longitudinal linearized differ-
ential EOM for the aircraft, are repeated for reference.

= —gt cos B + u+ X v+ Xz +.45 4,
w—Ug=—glisin® + Zu+L o+ Lw+ L g+ 558, (7.26)
g=Mu+Mpu+ Ma+ Mo+ Ma+ Mg+ M 45,

We will take the Laplace transform of these equations, but first it & important
to note that these three BOM have five aircraft motion variables (w &, a, w
and g) and &,. Because we only have three defining equations, we need to
reduce this down i three motion variables and 4, becomes the input or forcing
function for the system We will use the kinematic relations and the approxima-
tion for angle of asttack, «, to reduce to the three motion varables of =, «
and 8.

From the kinematic equations [Eq. (4.80)] and the assumption of initial
trimmed Aight with the wings level condition

Also, for small perurbations

-::==="5=}- w=all, and w=a&ll
1

Therefore, our sircraft motion varishles are reduced o &, &, and & These
should be thought of as the outputs for our system of differential equations.
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With zerp initial conditions, the Laplace transform of Eg. {7.26) yields

su(s) = —gpis) cos B + Xoas) + Xp wls) + Xoals) + X &.(s)
sl als) — U s s) = —giNs) sinB®) + Zoals) + Lol 5) + Fpsan(s) + L o(x)
+ Z5 8,045
SN = Mads) + M r wls) + M,o{s) + My als) + Mzsals) + M s8s) + M 6,(5)

Combining 2rms vields

(s — AL —Xp hls) — X o(5) + g cos B Ns) = X S(4)
— Zls) + (U, — Hds — L Jals) + [Z, — Uh)s + gain B, s) = &5 5,05
— (M, + My wds) — M5 + M, + My Juls) +(s —Hg.'i':l-ﬂ{.'i':l = M & (5]

Notice at this point that we have moved the terms with & {elevator deflection)

to the right-hand zide of the egual sign because &, & the forcing function {or
input) for each of the three differential agustions In matrix form this yvields

(& — X, — &r) X & Cos By w5
—Z, AU, -5 —Z] [HE+ Ul +gsin®] || afs)

—M, + M) —[Mygs+ M, + Mr ] (st — M) &z

X3,
— | Z. |549
Hﬂ.

i w &) a@lg) &z )
In E&rms of the transfer Emtlmm m andm we have

C ufs) T
= — X, — X3 — X, & cos B,y ey
—Z, WU, - L) - Z] [HE +Uk+gsin®)] || ﬂ?}
—( M, + Mp) —[Mgs+ M, + M7 ] (5" — M) 5{.-;-3
| 5.(s)
"!"r-i.
= | &, (7.27)
M;,

and each of the three longitudinal transfer functions can be deemined using
Cramers rule as presented in Appendices F and G, It is important st this paoint

IARE Aircraft Stability and Control Page 175

Source from Yechout, T.R. “Introduction to Aircraft Flight Mechanics”, AIAA education
Series, 2003




not i lose sight of what we have developed. Each of these transfer functions
can be represented as the ratio of two polynomials in the Laplace variables.

wg) AS + B +Cs+D,

E_{&)=EJ‘+HJ+G.52+H&—|-I (7.28)
als) _ A + B s+ D0, (1.29)
di5) Efr+ R+ G2+ He 41T '

M) A B+ G (7.30)

di5) Efr+ R+ G2+ He 41T

Notice that all three longitudinal transfer functions have the same input (£,.)
and the same denominator, There is & separate ransfer function for each of our
three longitedinal motion varables (i, & and &), Abko, each of these transfer
functions has the same characteristic aquation:

Es*+ Ff + G + Hs+ 7 =10

Recall that rhe charrcferisfc aguafion determines he dymamic stabidity char-
acterisfics of the response, and therefore all three transfer functions will have
the same dynamic characteristics {parameters such as [, @, and 7). Notice ako
that the numerator of each transfer function is different Each numerator ooeffi-
cient iz designated by an 4, B, C, o D with a subscript appropriate to its
respective transfer function, The numerstor affects the magnitede of the

response, and therefore each motion variable will have a different magnitude of
response but with the same dynamic characleristics,

7321 Three-degree-of-freedom analysis of longitudinal modes of
motion. The preceding development included the three motion variables w, &,
and 8. Thi analysis may alko ke termed a8 three-depreeof-freedom {3 [OF)
determination of the longiuding] transfer Em-ctlmm MNormally, with the help of
oot solvers such as those available in MATLAR" (& regisenad rademark of The

MathWorks, Inc.), the fourth order characteristic aquation for longitudinal motion
can be written as the product of two second-order (oscillary) polynomials.

(& + 2gpmy & + ajy W' + Wpgay s+ oy ) =0 (7.31)

The subscript SP refers © the shont pericd mode and the subscript PH refers
to the phugeid mode All airplanes have these two longitudinal dynamic
modes. Each of these polynomials can be thought of as a separate characteris-
tic aquation that defines the dynamic characteristics of its respactive dynamic
e,

The cosficienis fand rooig) of exch characterisfic sguation change witk
Might condition, airpkine mass mass distribalion, airpline grometry and aoro-
dymamic charecferisfics. These changes translate to changes in w, and [, but
the fundamental presence of the short period and phugoid modes is main-
tained.
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The short period mode iz characterized by complex conjugale roots with
a moderae © relatively high damping ratio and mrelatively high natuwral
frequency and damped freque sheart d). It is easily demonstraied
first trimming the aircraft mi-dTTI:‘rE}.m{di ing it E‘ﬂ:l'l'l.‘l‘.‘l'i:l'l'l.'l.}.li'iﬂ'iﬂ fmﬂ.li'ﬂ:l'dvﬂhﬂ}.-r
neutral pitch stick input {commonly called a doublet). The resulting response
back to rim may be either fist order (exponential decay) or second order
(oscillaory). Significant variations in the angle of attack {a), and pitch attitude
{7 longitu-dinal motion varables occcur while the asirgpeed (@) motion variable
emains fily constant Trim is generally regained in a few seconds, thus the
descriptive name short period and the small varistion in sirspeed. Typical time
histwories for the short period response of a fighter aircraft @ a doublet input
are presented in Fig. 7.13.

MNotice that the response is second order (oscillatory) and that ¥ remains

fairly constant Oscillations of larger maenitwde are observed with & and £
Motice aleo that the response is stable.

The phugold mode iz charactierized by complex conjugate roots with a
relatively low damping ratio and nateral/demped frequency (long peried). It is
demonstrated by rimming the aircraft in level flight then inputting aft stick
for approximately 2—3 s, bleading off some airspeed, and then retwrning the
stick to the neutral (trimmed) position. The resulting response 5 usually oscil-
latory with significant variations in pitch attitnde and airspead, while angle of
attack remains relatively constant. The phugoid has been described as an up
and down roller coaster oscillation in the sky that rades off kinetic and poten-
tial energy. As the oscillation staris, airspeed decreases while the airplane gains
altitude {I!I'I:-Iﬂ'i angle is positive). The aircraft then begins & lose altitude, and
asirspeed incresses while the pitch angle decreases This iz followed by the

agircraft pulling uwp gradually and retuming to the climb portion of the phugoeid
oscillation. The period for the phugoid iz typically quite long (somewhere

) I i T L
/;‘ \ A ST T T IS
IEiim — _'_.-"d_q“-q,ﬁ_‘_\ hf#_ o 1::_.--"' 5 Ern
.-"FFEH . limw

"'-,\_/..-" —

Fig. 713 w, o, and B time history plots illustreting the short period mode.
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Fig. 7.14 o, o, amad B time history plots ©r the phogoid mode.

between 30 and 1205, Typical time histores for the plhugoid mode are
presented in Fig. 7.14.

MNotice that the response is alko scond order for the phugoid and that angle
of attack remains relatvely constant The frequency of the oscillation for the
phugoid & much lower than that observed for the short pericd maode. The
phugoid 25 shown in Fig. 7.14 iz stiable, but this may not be the case for all
Aight comditions.

Example 7.9

The a8, ransfer function for a T37 cruising at 30,00t and 046 Mach
follows. Find the netuwral frequency, damping ratio, damped frequency, and
time constant for the short period and phogoid modes.

2 _ o {5 + 336.10{#* + 0.01055 + 0.0097)
5 a2 (2 + 4585 + 21 6)(+2 + 000985 + 0.0087)

We oo immediately i the two characteristic equations

458216 =0
s+ 0.0008s 4+ 0.008T = 0

The neteral freqguency () for the fist characteristic aguation is
.£|_'|.l = m = 4 &5 :I'Hi_.lli

IARE Aircraft Stability and Control Page 178

Source from Yechout, T.R. “Introduction to Aircraft Flight Mechanics”, AIAA education
Series, 2003




and for the second aguation
=/ 00087 = 0.0993 ad /s

We can identify the firg chamaciernstic equation as being for the short period
maode because of the higher natural frequency., The phugoid dynamics are
containad in the second characteristic equation, Thus

fily = 465 rad/s

iy, = 00933 rmadfs

and
458
[ = — 0,403
I 2,'1;.-*
{.F" = ﬂﬂ-m" = (.0525

MNotice that both the short pericd and phugrid responses will be second onder
because [ i less than 1. Both responses are stable because (m, is positive for

each mode, The damped frequency is
dp = dl, l—{i
g =, L—.:fj,:dﬁs,,-"L_—mmf — 4 (46 rad/s

anpy, =m__*,,|"_1 — I =u.ng-3:1,l.-" | — {00525 = 0.0932 rad/fs

and for the time constant

1 1
F T [, (0.493)4.65)
1 1
T Lam,,  (0.0525)(00933)

T = {436 =

= MM 2 5

7322 Twodegree of-freedom short perod gopproximation.  To gain
insight into the stability parameters and derivatives that influence the dynamic
characteristics of the short pericd mode, we will leok at a two-degree-of-freadom
(2 DOF) approximation. This i a solution in which the motion is constrained to
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two motion vanablkes rather than three. Recalling ouwr discussion on the short
period mode, we will make the simplifying assymption thet o remains near zero
and can be removed from Eq. (7.27). With this assumption and the eliminaton of
the r-force equaton (which iz assumed to have a megligibe effect if w is
approximaie ly constant), we retain the z-foroe equation and the pikching moment
equation along with the maotion varishles o and 8.

P i PP - =
—%, U, —Z) —Z]  HE,+ Uk +g sin®] || s
—(M, 1 My ) —Mus + M, + My ] (s — M_5) A
= | £, |4&is)
M;,

Equation {7.27) becomes
Al — &) —Z] [HE+Uik+gan®] [Ta(a ]| _[Z5 |, )
—[ M + M, + M7 ] " — M5 A | T | My |
(7.32)

We will next focue on the dynamic characleristics and the characteristic equa-
tion {which is the determinant of the first coefficient matrie). We will look at
the short period approximation asuming that 5 =2, =8, =My =0
because these ems are generally small compared to the others.,

Equation {7.32) becomes

sty — Z. —ths Ma=n] _[Z
M5+ M] £ — ﬁar_].-a-] -E'-[.-i-j] = H?_]E‘{'ﬂ
The characteristic aguation is

(5T — Z0" — M) — (Ui~ Mas + M) =0

.-a-Lrl[.-a-i — {Mg 4+ 5, M&).H {ﬁ — M }] =
Ln Ln =

aedl ins.in'plifhad b

2 Za o Z.M,
8= {:H_! — L—rl—r Hﬂ!}.‘i‘—l— L_rl._ H,} = {0 (1.33)
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For this 2-DOF approximation we can find ={)/8,(s) and &5)/5,(5) using
Cramer's rule as before.

wls) Zg s+ (M; Uy — M Z5 )
5 - M,
) Lrl[_gi — {Mg + %1- H,E}a--r {:E"Tlg —H.,}]
{7.34)
s (LM + 55 Mgls + (M 25 — ZM; )

)

An approximation of natural frequency and damping ratio can then be deter-

mined using Eq. (7.33).
m_# == | H {T--_'Ij:'

{:H .y F-I' H&}
Lgp == — (7.36)

Aik

4,(5) ,g-[."l_[ — (M +f.r 'I'Ht)

Typically, —M, i nmuch larger that Z M, /U7, (as long as the ¢.g. is not too far
aff). This results in

i, =M= =TT (7.37)

wF

The following insights can be observed from Eg. (7.37) for the shont pericd
maode natural frequency: 1) w, will increase as static longidinal stability
(—Ce,) increases or as the distance between the cg. and the aircraft AC
increases; 1) wm, will increase as dynamic pressure () increases; and 3) w,
will decrease as the pitching moment of inertia (I,) increases

Equation (7.36) also leads to important insights for the shont pericd damp-
ing ratio: 1) M, the pitch damping derivative, is the driving &em, because 2)
Z,/U & generally driven by other requiremenis, and 3) M; i generally driven
by the same design features (horizontal wmil size and the disgasnce from the g
to the AC of the mil) as M, and M, & typically about one-third the value of
M. One of the limitations “of this approximation for damping ratie B that it
assumes that [ is positive (a stable case), which & not always true. It i recom-
mended that unstable cases be analyzed using & 3-DOF solution.

7323 Two-degree-of-freedom phugoid aporoximation.  As with the
short pericd approximation, we will look at a 2-DOF approximation for the
phugoid mode to gain insight ind the parameers that influence dynamic
characteristics. For the phugoid approximation, we will assume that o |s constanit
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with & and & {or g) a5 the motion variables. We can eliminste the afs) terms and
the moment equation in Eq. {(7.27) o yvield two eguations with two motion
variables

s — X, — X & oos 1By w5

[—{EE—L’L:L-i-—gain'EIL] —fr
=)
X;,
= | &, |&A8)
M5

[.'i‘—..tr.—.utr;r- gm&.ﬂl ] 1..:{1'3] —[fa']ﬂ‘{lﬂl
-, [H&; + Uh)s+ gsinB] || Ns) |~ | &5 g
If we assume X; = £, =8 =0 we get

g— X, — X & ws)| | O
rm g l)-[e o

The characteristic equsation beoomes

s — X — A W—-UNs) + g2, =0

z
- L’l[.F — (X + X7 W — L—;lg] =1 {7.39)
We then have
o o P& [—2[—@SNCe +26)
sali N 7 mL
T
I.fx{ils:n{r:;, + 2%}
ey i
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Typically Cp <7 2C, and Cp = mg/q,5. With these assimptions we have

I

o o [E@S :-Lm.s.-] 287
N 35 T

B
iy, 5 L—rl.._.-'i {7.440)
There fore, we can observe that the maural frequency of the phugoid mode is

approximaiely inversely proportional & the forwanrd velocity, L.
Retwrning to the chamceristic equaton [Eg. (7.39)], we can define an

approximation for the phugoid damping ratio:

[, =2t ¥
Em__
Because
O =20 g, 8 (Cyr +20: 5
X =_'[ n J:-.:"i'L and ‘,_,.?: _ Y mU:"..:"ill
1

J:l'ILrL
We can substitute these valwes into the expression for [,

(Cp, +2Cp, —Cr_—2Cr M58
fon 2mUw, (7.41)
-

Equation (7.41) provides uws with an approximation for the phugoid damgping
ratio, To gain a litth maore insight, we will look at the case of unpowered or

gliding fAight where

With this assumgtion
(Cp, +20p ¥  (Cp +2Cp )80,

';F" = E-U!Lrl.'ﬂ:'n__ - lm[_rlj:.”."i
I;* _ {I':D_ - 'EED.:&I.S _ {I':D_ —.EI':DI:I i
2 T 242 Cy
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At this point we can make one additonal asumption for low-spead fight
where

Cp, = 0.
With this additional assumption, we have

2C,, | Cp,

RN TR A

Equation (742) indicaes that the id damping ratio is inversely propor-
tiomea] to E& lift to drag ratio (L uﬁg:?m wzgmmtkeq: i mi:'::i all the
assumptions we made to obtain this result. It does indicate that airplanes with
high values of L/D may have poor phugokd damping. If this is the case,
precise control of speed becomes difficult, which can be a problem during the
initial phases of a landing pattern However, afler the gear and faps have been
lowered, L/D is reduced and damping of the phugoid improves.

Example 7.10

To illustrate the concepts of transfer functions, characteriftic aquations, and
the modes of motion, we will consider a Lear Jet flying at 0.7 Mach and
40,000 ft. The 3-DOF longitudinal ransfer fmctions are approximaed by

wls) (6.312)52 — (4927)5 — 4302

F05) (675908 + (3T1F + (597 +(86.31s + 44.T8
als) (0.746)8 + (208302 + (2.665)s + 139

G5 (6759)8 + (BT + (597 +(86.3 1w+ 44.78
e (208.1)6 + (136,905 + 2380

(5 (E150)F + (BTDA + (M50F + (8631w + 4478

Find the nawral frequency, ing ratio, damped Enaﬂuenc time constant,
and peried of cecillaton for umMami Pged mnii..

The characteristic equation is found by setting the denominator of the trans-
fer fnction equal to 0. The characteristic equation for te Lear Jets longindi-
nal motion is

67595 + 13718 + 54505 - B63 s+ 4478 =0

sV 20084 £ ROTEEST + 012775 + 006625 =0
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Using a root solver, such & those available in MATLAB, the four roeots are
found to be

$.2 = [gptug,, = fap = —1.008 = i(2.651)
8.4 = Lpptny,, Eiop, = —0.0069 £ i(0.0905)

The oot with the largest wp are obviously associaed with the shon period
mode of motion, while the other roots are associated with the phugoid mode
of mation.

Lopany, = 1008w, = 2.651 radfs (short period)
Leginy,, = 0.006%mp, = 0.0905 rad/s  (phugoid)
Wy, = yfl{—'im.wﬁp'l' -Ili'f;: = 1,"|-[_—1ME:]2 - {E.ﬁ'\j‘lf = 2836 rad/s

= 1.-""[_ Ly Vpgy + wd, = ,I,-"-[—u.maﬂ-f + {u.m:r)—i = (091 rad/s

Lty LODE
b = g, 2E36

_ Crrity,,  OLODGY

= (L3535

= = {.{T&
Sp fny 0.091
| |
= = i 902
S ran,  1.008 .
| |
TpEr = = 14493 5

The fourth-order characteristic equation can therefore be written as two
sacand-arder {oscillatory) characteristic equations in the form

(5" + 2 gpoy, 5 + o, W5* + 2pgany, s+ oy J=10
For the Lear Jeot example, this is
(s* + 20165 + £.0020)(s* + 0.0138s 4+ 0O0E2R) =0

Mote that the relative magnitudes of the short period and phugoeid characteris-
tics are as expectad
ay, =2 836 radfs = ay =009 mdfs
fp =0.355 = [pp, = 0.076
g, =2.651 radfs > ap,  =0.905 rad/s
T = 09925 < 1, = 14493 5
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The pericd of oscillation can be found wsing

2
i
LT
2
‘P=1,|5.j| e=237=
i .
?]’J'=|} s =69 43

It & also worthwhile to plot the shont pericd and phesoid oo from
Example 7. 10 on the complex plane, This & accomplished in Fig. 7.15. Notice
that the short period roots are further out from the origin and have a higher
damping ratio than the phugoid roeots The melative location of these roots is
typical for most aircraft.

Example 7.11
Use the shdart perod and phugoid 2-DOF spproximations to estimate the
natural freguency, davping ratio, desmped frequency, and period of oscills-
tion for the Lear Jet. Compare the approximation resulis to those obtained in
Example T.10.

Using the shart period approximaton Eg. {7.34), we have

2017+ R807TTT=0

Shori Period
Fouoi [T
\ =11
X
—1F
_;ffﬂ‘ Mingoid Bosots
T T T ':' -
-3 -2 N | I « {Fzall
- |
-2
Short - 1,
Feried Boct :

Fig: 715 Complex plane plot of longitodinal mots for Example 7.00.
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o, =BOTTT radfs = 2842 radfs (2836 rad/s for the 3-DOF case)

Because

A, m =20173=>[_=0355 (0355 for the 3-DOF case)

and

g =, | — -f], = 2657 ad/s {2651 rad/s for the 3-DOF case)
2

Ty =—

lllil]:.*

=235 {237 & for tee 3-DOF case)

As can be seen, the comparisons with the 3-DOF case are very good.
For the phugoid approximation, we use Eq. (7.39) to obtain the characteris-

tic equation:
£+ 000755 + 000663 =0
For natural frequency we have
t,,, = ~0.00663 radfs = 0.0814 radfs  (0.091 rad/s for the 3-DOF case)
To obtain damping ratio,
2 pgen,,, = 00075 = [py =0.0461 (0,076 for the 3-DOF case)

and

wp,, =0, | — Gy =0.0813mmdfs  (0.0905 rad/s for the 3-DOF case)
2

RTST]

(- — 77275 (6943 s for the 3-DOF case)

In thizs example, the 2-DOF phugoid approximation provides estimates to
approximately 10%% accuracy with the exception of damping ratio, which has a
4% ermor.
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73.3 Lateral-Directional Linearized EOM in Laplace Form

We next use the same approach developed in Sec. 7.3.2 to transform the

linearized lateral-directional EOM devel in Sec. 6.5 w the Laplace
domain Again, the linearized EOM Eq. (6.133) are repeated for reference

o+ Ur=gpoos B + Fpf+ Fp+Fr+ Fd,+ ;8
p—Ap=Lf+L p+Lr+Ll, 5 +1;35 (7.43)
F—Byp=Ngfi+ Np £ Nr + N3 8, + N; 5,

where
- I - r
A == nd B ==
L fi El | T

Notice that the three EOM have five asircraft mation variables (v, p, r, ¢, and
A) along with &, and & . & and & are the inputs or forcing functions for the
lateral-directional system. Becaws we have only three equations, we will
reduce the mumber of mation varables & three by using the kinematic equa-
tions [Eq. (4.80)] and the assumption of a small pitch atitnde angle (8 ). Ako
recall that we previously made the assumption of ¢ =0 (wings level in
trimmed fAight) in Sec. 7.3.2. With these asammptions, we have

p=-|-ﬁ anad r=ﬁ-|
Also, for small perurbations
i

,H#:Ul:aruﬁsﬂﬂl and e B

There fore, we can mreduce our aircraft motion vanables to 8, ¢, and . These
should be thought of as the outputs for our system of lateral-directional differ-

ential equations. We could have easily chosen ¢, p, and r for the oufput vari-
gbles but insead chose the three angles, With zero nitial conditions, the

Laplace transform of Eq. (7.43) becomes

SEL, + s (s) = gipis) cos B + Fis) + Foap(s) + ¥l + Fy_8.08)
+ F; 4,(5)
£ pls) — A S W(8) = LBla) + Lsgla) + Lawls)+ Ly 8,08 + L; 5,(5)
s Ys) — By s* Pis) = Nghis) + N, B8 + Nospis) + Nswls) £ Ny, .05
+ N; 545)
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Combining terms and moving the contrel input to the right-hand side of the
equal sign, we have

(sThy — Felfis) — (sF, + g oos B Mbls) + sy — F Wols) = ¥y &.08) + ¥ &.05)

— LgBls) + (5" — L ahpls) — (s"A; + La)s) = L5 8,05) + L3 5,05)

— (Ng+ Np )B(s) — (#°B) + N Q{8 + (° — sV Js) = N, 5,(s)+ N5 (9
Regrouping in matrix form

(slfy —Fg) —(sF,+goos®) sl -F) Bis)

L (s* — L) —( A, +sL,) || dls)
—Ng— Ny —FBi+ Mg - L)
Fi. ¥a
|5 I [i_::;] (7.44)
No, N |~ ~

and each of the s lateral-directional ransfer fumctions can e determinad
using Cramer's rule as presented in Appendices F and . The six lateral-direc-
tional ransfer funcions are

Pls)f 8 (s, Psl s As),  Pls) S 0s), P8 /5 (5],
wis)/als),  and W) /5 (5]

Notice that there are six lateral-directional tramsfer functions vs the three we
have for longitudinal motion. This resuls from the fact that we have two possi-

ble control inputs (4, and 4,), each of which can cause changes in the three
lateral-directional motion varishles. In an attempt to minimize the number of
equations needed to represent these transfer functions, we will emporarily drop
the subscript on &, and &, because the transfer functions for each have the
same general form (Appendix (). Each of the lateral-directional transfer func-

tions can then be represenied as the ratio of two polynominals in the Laplace
variables.

Bls)  Apgs’ +Bes +Cpi+ Dy

H) EFf4+FA+ G2 +Hs+ T (7.43)

dis) _ Agst #Bys+Cy .46

Hs) ES+FE+GP+Hs+T -
A+ B s +Cus+D

i " W5+ D, .

He) fESf +FP+ TR+ Hs+1I

Equations (7.45), (7.46), and (747) represent the general form of the =ix
lateral-directional transfer functions. For example, to obtain the A{s)/5,(s)
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transfer function, simply use Eq. {Tﬂj“_l and use the & derivatives (¥;, L,
and W3 ) in the determination of A Cg, and Dg {mhppﬁﬂmﬂilna
similar fashion, to obtain the s Ir-[a- H'a:mﬁer t'm'-:u-um, Eq. (743) is used,
and the & derivatives (F;, L; , and ¥, ) are usad in the determination of A
BF‘ EF‘ and IJF As in the case -u-t'%rla longitudina] transfer functions, TJE
numerator of each lateral-directional transfer function & different. Because the
numerator affecs the magnitude of the response, each of the three motion vari-
ables will heve a dfferent magnitude of

All six lateraldirectional transfer fl.l:l'hﬂl-ﬂ:l‘i'.'t have essentially the same
denominaior, which leads to the same chamacteristic aquation:

EA+Fa 4+ T8 +Hs+I'=0

The extra & in the denominaior of the W)/ Hs) ransfer function indicates thet
the airplane is newtrally stable in heading (that i, it will not return & a rim
heading when disturbed), The associated piece of the characteristic equation
(& =0) leads to a constant in the time response but is not that interesting from
the standpoint of dynamic stability, Notice that EY, F, &, A", and F, are not
the same &5 the value of E, F G, H, and I in Egs (7.28-7.30) (the longitdinal
transfer functions). Because the characteristic equation determines the dyna-
mic stability characteristics of the response, all six ransfer functions will have
the same dynamic chamcteristics (I, @,, and #) but & different magnitude of
Tesponse,

7331 Thee-degree-of-freedom analysis of the lateral-directional
modes of motion. The preceding development of transfer functions for the
three laieral-directional mation varables 8 o, and o leads to a 3-DOF solution
for lateral-directional motion, Nomally, the fourth-order characteristic eguation

for hieral-directional motion is writen as the product of one der
(oscillaory) and two first-order (nonoscillatory) polynomials.
1 1
(5" + 2 pgt,,, 8 +og,) (ﬁ"l' ?—}(&1—?—) =1 (7.48)

The subscript DR refers to the dutch moll mode, the subscript r refers to the
roll mode, and the subscript 5 refers o the spiral mode. All aimplanes have
these three lateral-directional dynamic modes, Each of these polynominals can
be thought of a5 a separste characieristic equation that defines the dynamic
characteristics of its respective mode.

As with the longitudinal case, rhe coefficients fand rook) of erch charreter-
isfe egqualion change with fUght condition, airpline mass, mass distriation
airplane geometry, and aerodynamic characterigtics. These changes translate to
changes in L Cog. T and 7, but the fundsmental presence of the dutch
roll, ral, and spiral modes & maintained.

The dutch roll mode iz a second-order response (complex conjugate
roenits) wsenlly characterized by concument oscillations in the thres lateral-dinec-
tional motion variables 8, o, and . In the dscussion on static stability, it was
observed that sideslip generates both yawing and rolling moments that lead to
a coupled motion between f, ¢, and . These oscillations may be of high or
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low frequency and may be lightly or heavily damped. The dutch roll usually
begins with a sideslip perturbation followed by cscillations in roll and yaw
The dutch roll motion is something like that of an ice skaters body weaving
back and forth a5 weight shifts from one foot & the other. As the magnitsde of
{.'J‘ (lateral static stability) becomes larger, more roll coupling is present during
dutch roll escillations, and the dutch roll characteristics typically bacome more
objectionable. Objectionable dutch roll characteristics adversely affect precision
tasks like airto-air and air<to-ground tracking, and formation fying.

The roll mode has a real root and a first-order (nonoscillatory) response
that imvolves almost a pure rolling motion about the x swbility axis, It is
usually stable at low and moderste angles of attsck but may be unstable at
high angles of atmck, The mll mode can be excied by a disturbance or an
aileron input I is easiest W characterize the roll mode when discussing
response & an aileron input. If 2 sep aileron input (4,) & made to the aircrafi,
there is an exponential rise in roll rate (== &) until a steady ate roll rate is
achieved. We saw this firgt-order type response in Sec. 7.1.1.1. From the pilots
standpoint, the time taken during the exponential rise to steady state is inder-
preied as a finile delay, which we usually characterize with the time constant
(.0 If =, is &0 large, the aircraft is considered slugeish because it may ke
too long for the commanded roll rate to build wp. Likewise, if =, is too small,
the aircraft may be 0 responsive to external disturbances such a5 turbulence.

The spiral mvede is a first-order response (real roof) that involves a rela-
tively slow moll and yawing motion of the sircraft, It may be stable or unsiable.
The spiral is usually initiated by a displacement in roll angle and appears as a
descending tum with increasing roll angle if unstable. If the spiral is stable, the
aircrafi sSmply retums o wings level after a roll angle displacement. The
primary motion variables during the spiral are ¢ and o, while J remaine close
to zerp, A high degree of laieral stability -[C,“_l will tend & make the spiral
stahle, while a higch degree of directional stability (C, ) will &nd to make the
spiral unstable. Fortunately, spiral instability can be tolerated as bong as the
time to double amplitnde (based on the initial roll angle displacement) is
gradual (greater than approximately 4 5). Under these conditions, the pilot can
metmn the asircraft © wings level flight with litde difficuly using sn aileron
:ET_ lfﬂE‘h& spiral mode is unstable, the time © double amplitude (7;) & caku-

wi

W2 089
T unatable root | unstable root

T {7.49)
Spiral stability & uwsually compromised for good dutch roll characteristics that
are typically achieved with relatively high directional stability and relatively
low lateral stability.

Example 7.12

The 8/&, transfer function for a T-37 cruising at 30, ({0t and (.46 Mach is
given next, Find the natural frequency, damping ratio, and damped frequency
for the dutch roll mode, and the time constant for the dutch roll, roll, and
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spiral modes.

g | 41 (& 205Nz + 0.0741)
& T s+ 12T+ 0.003T)sE + 02275 + 5800

We go immediately & the three characteristic equations

SE02s =58 =0
g+ 1.27T=1
g 0.0B3T =0

The second-order equation is for the dutch roll mode, and we have
= v3.8=241 md/s
The damping ratio for duich roll becomes

0227
[og =2l — 0.0471
DE Em"

i

and the damped frequency is

g, = m,l,-fl—g?m=141,,-"1—{ﬂ.m1lf=1Aﬂ'.rmd,-'5

Lk

The time constant for dutch moll is

l l

o —  ATZAT) s

At this point, we should comment on the relatively low damping ratio and
large time constant for the dutch roll mode. As we will see, these do not pass
military specifications. As a result, the T-37 has a yaw damper instlled to
improve the basic airframe dutch roll characteristics.

The two first-order characterigtic equations are for the roll and spiral modes
Referring back to Eq. (7.48) and realizing that the roll mode will have a smal-
ler ime constant than the spiral mode, we have

|
= —={LTRY
=12 *

1

L =gomy U

A few dbservations are in order With the moll mode time constant being
less than 1s, we can see that the T-37 roll response i fairdy crisp. The spiral
msde iz stable for this Aight condition as indicated by the negative oot

IARE Aircraft Stability and Control Page 192

Source from Yechout, T.R. “Introduction to Aircraft Flight Mechanics”, AIAA education
Series, 2003




(s = —00037). Becawe it iz stable, the time constant indicates the time it
takes to retorn to 36.8% (1-0632) of the nitial displaced moll angle a5 the
aircraft retums to a2 wings-level attitude. For example, if the initial displaced
mall angle is 10deg, it will mlke abouwt 4.5 min (27T0s) to retem to & 3. 68-dep
mall attitede (asseming te pilot makes no aileron ingut).

If the characteristic equsation for the spiral had been

£ — 03T =10

then the spiral would be unstable (a positive root at § = 0.0037) and the time
to double amplitinde would have boen [using Eq. (7.49]]

0693

= = |&7T
2 = p00aT ®

A summary of root and response chearscensics for the two longitwdinsl
and three lateraldirectional dynamic modes of aircrafi moton is presented in
Table 7.2,

7.3.3.2 One-degree-of-freedom roll approximation.  To gain an under-
standing of the stability parameters and derivatives that influence the mll mode,
we can e limina e two of the three degrees of freadom or motion variables, The roll
msde is the simplest of the five dynamic modes We begin with Eq. (7.44) and
retwmin only the o motion wrishlke, te &, control input, and the rolling moamnent
equation, Thus, Eg. {7.44) simplifies o

(* — LsWbis) = Lz 8,(5)

The mll approximation ransfer function becomes

M __ L (7.50)
a05)  sls— L)
Table 7.2 Root and response charscteristics for the mircraft
by e i moiles. o F omaskio
Pl Rauwt type Respemse
Long tudmal
Showt penod Complex conjugeis sl lednry
Phugad Complex oomnjugmis ool lednry
Laderaled mectional
[rech moll Complex conjugeds sl lednry
Rl Rzl Monoscl lednry
Spral Rzl Monoscl lednry
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Equation (7.50) yields two roots for the characteristic equation: 0 and L, The
et at & =0 is of litle interest because it leads to the steady-state walue:

however, the ot & = i of more interest because it leads directly o an esti-
mate of the time constant for the moll mode

£ = —i (1.51)

Recall that Lji, is the roll damping stability parameter that is a direct function
of G the roll damping derivative. L, typically is negative, which males the
roll mode stable, Thus, we can deduce from Eq. (7.51) that the higher the roll
damping, the smaller the roll mode time comstant. This may seem counter-
intiritive &t first, but remember that the time constant is only an indicator of the
time © a steady-state value, Our intuition telk us that more damping should
lead to a lower seady-state value, 50 we will investigate roll rate response to a
step aileron input wing our approximation. We will define the magnitude of
the step aileron input as & . Thus

&
B ls) ==
and from Eq. (7.50)
Ls 5,
EE—D
The first siep in finding the time response involves partial fractions.
A O
M) =G+t e
where
Lz d,
A=), = — 1:-
d L; &, Ly,
B =E['i'2¢"[-'i‘:|]=-1= —m ,=.].= _E'Ea
L &, Ly
C =8 — LsW{s) =y, =—3 =—d,
i P, L

Combining and taking the inverse Laplace,

L, L. la, Ly, (La. )
Ii'{:.-] = __En: ] Eﬂ = nEI'l = __Ea:+ o Eﬂ {EITE - I':I
LF LF L.F L.F LF
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Figure 7.16 plot a time response of the previous eguation for roll anglk to
illustrate a graphical methed for chtaining the time constant
T obtain roll rate, we take the time derivative:

B =p= —i—“nﬁﬂ-u_j,(i—‘;)ﬁﬂﬁ
P

F

. L. &
¢=_—{"£ 21— ) (7.52)
I

We can make several observations based on Eq. (7.32). The steady-state roll
rate achieved will be —L; &, ,-'L which indicatwes that the larger the aileron
control power stability p:aran‘eta (L; ) andfor the larger the magnitude of the
aileron input (5,), the Iargaﬂuesﬁaﬂ}utﬂe mll rate will be. We can also see
that the magnitude of the steady-state roll rate is inversly proportional to the
mll damping stability parameter (L) In addition, the time constant predicted

Ea:r (751) is evident in the exponential term. To illustrate this, let

J-' in Eq. {7.52).

&= _‘I'—{“-E“ | — elet=lildy — _Lads 1—e'y= ﬂ.mz(— L“'E")
LP L.F LP

Thus, we can see that at f = «r, the roll rae i aqual to 632% of the seady-
state value. Figure 7.17 illustrates tese poins.

7.3.3.3 Two-deges of-freedom spiral gporoximalion.  Spiral motion
is dominated by bank angle, ¢, and heading angle, o, while § is very small. To

T

Fig: 7:-16f Ruoll angle response bo m sbep mileron inpat.
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achieve a 2-DOF approximation, we will neglect the roll angle motion variable
and the sideforoe equation. We neglect ¢ because banking does not induce terms
that cause the aircraft to moll out (thene are no terms like C). 9 terms do have an
effect on moll out because ut'-l':"l o (laieral static stability). Thus, Eq. (7.44) can be
simplified to

[—-’- —&{HL+-’-,):| .ﬂ{-ﬂ] _ [-’—a, -’-a.][ﬁa{-ﬂ]
YA | ET5 0 e |
The characteristic equation becomes:
I
—Lgals — N ) — '[_NF:'[ —ﬁ-{.i-f - I_,,:}] =)

Close inspection reveals that a common facior in the characteristic equation is
&, which can be cancelled. Algebraic manipulation yields the root of the spiral
approximation characleridic equation as

(7.53)

AL

For the spiral ©» be stable, this root nust be negative. The denominator of Eq
(7.53) is normally negative. Because Lg and N, are negative, and Ng and L,
are positive, we can deduce that the magnitude of Lg (lateral static stability)
should be larger than the magnitnde of Ng (directional static stability) for a
stable spiral mode (assuming ¥ and L are of approximately equal magnitude).
As discussed earlier, the unfavorable impact of this tradeofl on the dutch roll
may drive the designers to accept an unstable spiral (more directional stability)

b

Fig. 717 Roll mie response to a sbep ailemn inpuot
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in Bavor of acceptable dutch roll characteristics, especially at low speeds. From
Eq. (7.53), the spiral time constant can be approximated by

Lg+ f'-'}.(—)
?J'
Ngl, — Lg,
Unfortunately, the 2-DOF spiral approximation tends to yield poor resuli. It

does, however, provide insight into stability parameters and design features that
affect the spiral mode.

(7.54)

7.3.3.4 Two-degree-of-freedom duich roll approximations.  The dutch
roll mode is probably the most difficult aircraft dynamic mode o analyze. Several
2-DOF approximations are possible for the dutch roll based on which simplifying
assumptions are made. In many cases, it is best © look at an estimate of the
absolute value of the ratio of roll angle to sideslip |¢/ ] present during a dutch
roll oscillation to help guide dutch roll spproximation assmnptions. It is basically
the ratio of the numerator of the o) /N8 transfer function to the mumerator of
the S{z)/Hs) ransfer func tion evalusted at the specific damping ratio and dampad
frequency conditions, The ¢/f ratio telk us if the dutch roll iz composed of
mostly yawing motion, mosty rolling motion, or approximately equal excursions
of each. /8 can be visualized by thinking about the patiem a wing tip light
traces as the aircraft goes through a duich roll oscillation If the pattern is a
horizontal ellipse (major axis horizontal), ¢/ 8 is less than 1 and the roll angle
excursions are low compared to the sideslip excursions. If the wing tip pattern is a
circle, ¢ /8 iz approximately 1. A vertical ellipse pattemn indicates ¢/ greater
than 1 and the aircraft is considerad “molly”, generally because of a high degree
of lateral stability, This last case & usumally objectionable for precision tracking

tasks. The approximation
Cyp I, 1
|t (1.59)

will give us an estimate of ¢ffF as a start, We will ook at three different

imations for dukch roll dynamic characteristics based on this estimate.
Text Pilot School approximation.  This approximation is used by the USAF

Test Pilot School and assumes the dutch ral motion is mostly sideslip (| 8] wery
low). It iz believed that the approximations for damping ratio and nabural
frequency are based on experience.

e Yol

2) (3

e

(7.56)
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Two-degree-of-freedom approdmagon fr low /8. Here again, the assump-
tion is made that the motion congists primarily of sideslipping and yawing. This is
generally the case for aircraft with relatively low lateral stsbility (Cp). This

imation eliminstes the  motion varable and the rolling moment eqmtm
from Eq. (7.44). The result is

[{i'rl._}r,ﬂ:l s(lh, — ,:I] ﬂ{-ﬁl] _| K. If'a.][ﬁ.,{ﬂ]
& —&N, wizgd |~ | Ny N ]| A4

The characteristic -En.'lmiim iz phitained from the deerminant of the fArsgt matrix

¥, NoF,
[&'E—EN-I-U (ilra::'l' F—E'E.rl}]=ﬂ

and natural frequency and damping ratio are obtained in the usual manner

%#J:ﬁmyil{lw.—h}m:
_(_i'lli"r_l.flﬁi
L,

Lng=

With the previous approximation equations, the strong influence of directional
stability (Mg) and yaw damping () can be seen.

Two-degree-of-freadom approvimation for kgh /8. This qEFuxlmahm
makes the assumption that the dutch roll consists primarily of rolling motion

This may be the case for aircraft with high leral stability, The ¢ motion variable
and the yawing moment aquation are eliminated from Eq. (7.44).

[.mL — Fpg —.s{r;+g:|:| ,a.[.;;.] _ [Ir:,_ Ir:,_][ﬁ_,{s:.]
—Lg & —Ls || dis) &%)

and, after & few simplifications (¥, and -ﬁ negligible), the significant ¢characier-
istic equation becomes

5Ly — Fed(— L) — (—gN—Lg) = 0
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We then have

(7.58)

Notice the strong influence of lateral stahility (Lg) and roll damping (L) in the
previous aquations

The three approximatons presented for estimating duwich moll dymamic char-
acerisics all heave significant limitations because of the highly coupled motion
of the dukch rall. A 3-DOF solution s generally prefermed when analyzing the
dutch rall.

Example 7.13

Uszing the same sircraft and fight condition as in Example 710, the six
latera bdirectional transfer functions for the Lear Jet are approximated by

Bis) (4. 184062 + (55890 + 0,363

08 (674.90% £+ (421.2)8 + (1808)42 + (897.9)s £+ 0.903
dls) (79,500 £ (14.24) + 1893

&(5) (674.90% + (421.2)8 + (1808)42 + (897.9)s + 0.903
W) —{4. 18907 £+ (2,150 — (0.150)5 + 8.991

5 (8 sH674.90 + (421, 1 + (1808 + (BY7 %) + 0.503]
sy (01850 4 (18160 + (B.285)s — 0.0933

3 (8)  (E74.9u7 + [421.2)8 + [ 1808) + (8979 + 0.8
Bis) (B 1BR® — (2045 — 5385

S8 (674.90% £+ (421.2)8 + (1808)4 + (897.9)s £+ 0.903
Wis) — (18,08 —(RB021)? — (0.4481)s + 2550

305)  sHETA9) & (421.2)8 + (1B0R)2 + (8979)5 +0.903]

Find the time constant for the mll and spiral modes and the natural fregquency,
damping ratio, damped frequency, time constant, and period of oscillation for
the dutch rall modes.

The characeridic equation is

674954 L 2128 £ 1088 - 80T % £ 0. M3 =0
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or, in standand form
S 062418 +2 67RO £ 133045 +0.00D1338=0

Uszing a meot sobver such as that available in MATLAB, we have two real rogots
and omne pair of complex conjugates

& = —00010] = sgpqpay  (smaller real mont)
&y = —0307 = 85,1 (larger real root)

34 = — 0S80 :|:_|I'|..El|.‘||l = —I:_D_E'I:I.:I_I,.l“ ijﬂ?ﬂu

With these moeots, the characEristic equation can b written as

(& + 000101 Ws + ll'i.jll'l‘.rj-[.-i-2 + 0116+ 2618)=0
For the moll msde, we haee:

|
fnm — —W B = lmi
For the spiral mode, the root is stable (negative) 2o we have

1

fﬂm.ﬁl = —mi =00 8=

And for the dutch mall, we have:

we = 1617 rad/s

ank
wy, = 1618 radfs
e = 0036
| |
= — = — = 17.24
e T T T _0058 ®
2n 2n
The = = = 388 =
BT wmp 1617
Example 7.14

Use the 1-DOF mll approximation, the 2-[DM0F spiral approximation, and the
three duich mll approximatons to approximaie the lateral-directional stability
characteristics for the Lear Jet Compare to the 3-IMIF walues obtained in
Example 7.13.
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For the moll approximation, we uwse Eqg. {7500 and :I'Ei“ﬂ'l.ﬂi-l.ﬁ- = p = &b

PO _ de) Ly
B CEE CHs—L)

Substituting in the valwes for the Lear Jet

5y 6T
&) =+0.437

The ime constant bacomes:

I L
T = ~ o4 =220z (1-DOF approocimation)

Recalling that the 3-DOF mll time constant was 19725, the approximaton
compares within approximately 16%.

For the spiral mode, Eg. (7.53) yields: s = —0.0{65. For the time constant
we have

T, = —f = 1538 s (2-DOF approximsation)

The spiral approximation gives a8 poor prediction of spiral time constant when
compared to the 3-DOF value of 901 Es.
For the duich roll mode, we first use Eg. (7.55) i calculate

£ — 366
g

We next use the dutch roll approximations o obtain estimates for nabuwrsal
frequency and damping ratic [using Egs. (7.56-7.58)]. These mesults are
summarized in Table 7.3.

We can see that the Test Pilot School approximsation gives ressonably oodosd
values for both damping ratio and natwral freguency. The 2-DOF low o /8 matio
approxXimation gives a8 close valee for netural frequency but a poor predic tion

Tuhle 73 Comparison of dwch roll 3=-DYF and sppooximation

=0 lutin ns
ay, 5
Exact salution 3-DOF Case) 1.61 8 ma s 0036
1) Test Fikit School Approx. 1,659 rad/s Q033
23 DOF Approx. Low |68 162 rad/'s 05K
3) 2 DOF Apgrox. High |&/f] 068 rads 062
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for damping ratio. The 2-DOF high ¢/F spproximation has poor predictions

for both natural frequency and damping ratio (despite this being a relatively
high ¢/ case). The limitations of each approximation are, of course, directly
reled o the assumptions made.

T4 Dynamic Stability Guidelines

In designing an aircraft, there are several guidelines available for nabwral
frequency, damping matio, and/or time constant for each of the dynamic
modes, These guidelines are based on approximately the past half century of
Aving experence. Dynamic stability characteristics directly affect the “*flyabil-
ity"" or handling qualities of an aircraft The inerface between the human pilot
{with physical and mental limitations) and inherent aircrafi response characier-
istics nust allow for accomplishment of mission objectives throughout the
Aight envelope. Precision tasks such as landing h, racking, and forma-
tion flying can only be accomplished suwccessfully if the aircraft’s dynamic
stability characteristics are within acceptable ranges These ranges are usually
presented in terms of the dymamic characteristics we have discussed Of
course, another aspect of acceptable sircraft hemdling qualities invalves suffi-
cient control suthorty (usually referred to as control power) to mim and
maneuver the aircraft throwshouwt te Elghtmvel-ase We will focus on accepta-
ble dynamic stability charscienstics as sented in a Militmry Specification

(MIL-F-8785C)." Although this ipa':iﬂq:-ainn B no longer a requirement for
military aircraft, it does provide a good reference for the designer and estab-
lishes the concept of flying qualities levels. Another specification is published
for civilian aircraft in Pederal Aviation Reguirement (FAR) documents.

The advent of modem high-performance aircraft with high-authority control
sugmentation systems (F-15) and Ay-bywire contral systems (F-16 and F-22)
has resulted in dynamic stability characieristics that do not conform o classic
first- and second-order responses, Military Standard 17 is currently used to
address these advances. However, for purposes of this text, MIL-F-8783C
provides a good first slep in the discussion of acceptable dynamic stability
charmacteristics,

74.1 Aircraft Class

Acceptsble flying gqualities are a function of the size and mission of an
aircraft. To account for this, MIL-F-E8TRSC s?ec[ﬂm four classes of sircraft as
presented in Table 7.4, The determination of aircraft class is usually the first
step in utilization of MIL-F-BT85C.

74.2 Flight Phase Category

MIL-F-8M3C dynamic stability requirements alko are a function of the
Aight phase, or mission segment, that an aircraft & engaged in because differ-
ent demands are plced on the pilot. For example, airto-ground tracking
requires & higher degree of duich roll damping than cruising flight. The differ-
ent flight phases may also be associated with different dynamic pressure condi-
tions, which have a direct effect on dynamic smbility characteristics, Table 7.5
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Table 74 MIL-F-E7TRS( miroaft clesses

Class lemeral airoradi types Specific exmmples
Clmss 1 Light wii ity Twd]
smll, light Primery trainer T
aiplanes Laght olsavabon i1, D=2
lmss 11 Hezvy uhility fsearch anad rescue iC-21
s nm Light or medium trasesport f'cargoy iznler =130
weight; lowsin. Eady wemmg //BCM Command & opmiral E-2
s nem A miiesn hmarine 5=3A
mansuverability Assanl famsport C=130
airplanes Hlimoomn na sgam cm Lk2
Tactoe] hormiver I
Hemyy atiadk My
Traimer fior Class 11 Tl
Cless T Heavy ransport)cango /znler EC-10, &7
lages, heanvy, Hexvy bomber B.S2 B-1, B2
lowednmedium  Patw]fEady warming /BOM /Command & oot P35, SR-T1
maneuverahility Traimer for Cless T TC=135
amplanes
Clss TV Figher /Tniecepier F-ZZ, Fal 5, F=l&
high= Atk F=15E, A=10
mansuverability Taci@l] reoommasssanos REFai
airplames bsarvabon (=10
Traimer fwr Cla=s TV T-3§

presents the three flight phase categories indy which MIL-F-8TR5C divides all
mission segments for military aircraft, Terminal refers i the mkeoff and land-
ing phases accomplished in a2 @minal area Momally, the gear and Aaps down
configuration & assecisted with the terminal Aight phase (Cawgoary C), while
the gear and Aaps uwp configuration is associated with A and B.
When no Aight phase category is stated in a8 dymamic stability reguirement
that requirement applies to all three catepories.

74.3 Flying Quality Levels

An sircafts compliance o the dynamic stability reguirements of MIL-
BRTRIC iz defined in s of three Aying quality level. These are sumimarized
in Table 7.6

Level 1 is the highest level of Aving qualities and is the reguirement within
the operational Aight envelope with all aircraft systems in their normal operat-
ing stmie. It is important & define the term operational Aight envelope. Flight
envelopes are usually defined by boundaries of speed altiude, load fBEctor
angle of attack, andfor sideslip. The operational flight emvelope s the inner-
most or inside emvelope when compared with the boundaries of the service
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Tahle 75 MIL-F-ETRSC flight phase cabegnries

Caiegory &  Theses nomemminal flight phases thet requoire r2pikd manesvenng, precision
itmcking, or preass fight-path onirol. hoheded in this otepery o

(@) Amredn-anr oomhet (OO0 ifi Im-flaght efudng recener) (RR])
b} Ground atack @A) () Terran folkemg {TF)

(o) Weapmn deliveryflanmch (W) ¢h) Antisubmanne ssrch (A 5)

(d} Averia]l mcoveny [AR] i) ose Hrmation fying FF)

{2} Reconneis=mae {BELC)
Caimpgory B Those nomierminal fight phees that e nommlly accomplished wsing
gralum] meanesuvens amd withme pecison radong, alhough acomis
Highi-path oomirol may be reguired . Inchided in ihis cisgory ans

{2l Climb (L) (=) Descent (]
(b} Cruse (CR) (f} Emergency descent (E1TN)
o) Lawter {41 i) Emergency deceleration {VE)

i(d) Im-fhaght refelmg (enlker) (ET) {h) Asral dehwvery (AD)
mamneuvers. amnd which wsnally equie zoowzis Highi-peth ooniol.
Included in this caiegory ame:

(@) Talomadf {TCH) (d) WaveoHgo-around (W]

{b) Catapult tkeaff (CT) &) Landing (L)

{c) Appmach (PA)

Aight envelope and the permissible Aight ervelope (to be discussed later in this
section). The boundares of the operational flight envelope are set by misslon
requlrements. Expecied missions are analyzed to delermmine what speed, alti-
twde, load factor, angle of atiack, andfor sideslip ranges will be neaded to
accomplish each mission, and this information is used to define the operational
Aight envelope.

Level 2 implies an increase in pilot worklosd and/or a degredation in
miszion effectiveness becase of decreased dynamic stability {or control power)
characteristics. Level 2 & considered acceptable when the cumulative probabil-
ity of all failure states thet could result in Level 2 fAying gualities within the
operational Aight envelope is less thean once every 100 fAights. Por example, an
aircraft has ten failure sties that reslt in Level 2 fliying qualities in te opera-

Table 7.6 MIL-F-HATRSC flying quality levels

Levd 1 Flying qualites deasdy adequeis fior the mission fiight phase

Levd 2 Flymmg quahtes alsquate i acopmplish the mission fight phass, bot some
increzss m palot werldomd or degradation in masson effect veness, or bodh,
e sis

Levd 3 Flyimg qualities sach that the irplanes can he omitrolled sefehy, ot milod
worklnad i excemive or muission dfectvenes & inadeayuede, or haoth.
Cadempgory A flight phases can be ermmmaded safsly, and Category B and O
Highi phaes can be ocnmpleted
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tional flight envelope, two of which each have a probability of 5 = 10—/ Aight,
and the other eight each have probabilities of 1 x 10— fAight Such a sitation
fails the MIL-F-BTB5C requirement because the cummlative probability is
1.8 = 102 /Aight, nearly twice the allowable limit. The reliability of these £ail-
ure sies would have to be improved to meet the cumulative requirement.

Level 3 requires that control of the airplane is maintained but allows exces-
give pilot workload and/or inadequate mission effectiveness It & basically a
“get home™ level and is considered acceptable when the cumulative probability
of all failure states that result in Level 3 in the operational fight emvelope is
less than once every 10,000 flights, and the cumulative probability of all failere
states that result in Level 3 in the service flight envelope is less than once
every 100 flights. Before defining the service flight envelope, we will define
the outermost fAight envelope, the permissible flight emvelope. The boundaries
of the permissible flight envelope are set by aircraft mance and safety
limits. aircraft either is not capable of exceading limits, or, if it can
exceed these limits, poentially catastrophic failures may oocur (2uch as struc-
tural failure or engine failure) when beyond these limits. The boundaries of the
service flight envelope are between the operational flight envelope and the
permizsible fight envelope (that is, its boundaries contain the operational fight
envelope but it & contained within the permissible flight envelope). Cutside the
service flight emvelope, but within the permizsible flight envelope, the handling
qualities with the aircraft systems in the nomal stie are expecied to be at
least recoverable. This means that controlled flight may be temporarily lost (as
in a stall), but the pilot can safely return to the service flight envelope and
regain control, The service flight envelope basically acts a3 a safety margin
between  the rational Aight emve and the isible fAight envwe .
The }mMingTﬁ lities of mghajm Ethn':}' degrade ﬂmm ﬂmgz:‘mu uth'T‘rtl;E
permissible flight envelope, but we want the degradation to be gradual, not
sudden. Level 2 handling qualities are generally the minimum requirement,
with all systems in the nommal state, within the service fight envelope but
outside the operational flight envelope. This ensures that the pilot has handling
qualities good enough to avoid enering or exceeding the permissible Aight
envelope inadvertently, A level better than the one specified is ako considered
acoeptable for a given failure situation, Section 7.3.5 will discuss the Cooper-
Harmper rating scale for aircraft flying qualities which has a direct comelation to
the MIL-F-8T3C kwk dicused here. A simplified deckion process for
using MIL-F-B8783C is presented in Fig. 7.18.*

74.4 Short Period

Dynamic stability guidelines for the short pericd mode are covered in two
documents, Both will be addressed in this section.

744.1 MIL-FB785C. MIL-F-8T85C requires that the shor period mode
meet both a damping ratic and natural frequency irement, The equivalent
damping ratio requirement are presenied in Table 7.7 and are a function of
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What Faghl e b What 15 1he ainead
i% the mircrali in? sizEE”
iopemsh oml, service inermal, Tmlure, or
o perenesibll sl Tl
W'her lovel of flving
RN aEE = redpuined! |
— | jLiewvel |, Ll 2, 4w
LLewezl 3]
What Plight pheee W hal s e airores class!
by 1% e sorera il m® s [, Clanes T ks
I pory A, Cmepory H, 0L, or Cless 1%
o Cakpory O

b
4 Requirement g————

Fig. T.18 %im plified decision proces or wing MIL-F-RTRS(.

caepgory. The term eguivalent iz weed s0 thet aircraft with high awthority
sugmentation systems o fly-by-wire systems can aleo be included. These aincraft
have dynamic resgponse ¢haracteristics (by design) that are significanty different
from those of the basic asirframe.

MIL-F-8T3C requires that the short period natural frequency fall within an
upper and lower limit as a function of the aircrafts n/a ratio and fAlight phase
caegory, Figures 7.19-T721 present the Level 1, 2, and 3 regions for short
period natural frequency by cakepory. Notice the logarithmic scale for afa
This parameter can be edtimaied for an aircraft using

" 2
— w2 (7.50
r o K :I

nfz can be thought of a5 a load factor (n) semsitivity parameter. It increases
with increases in O and wing area, and it decreases as weight increases.

The HIL.TFTF.‘."H.SLt shart period reguirement will be satisfied if te roots of
the short period mode fall within a region on the 5 plane. In general terms, this
megion is presented a5 the crosshaiched area in Fig, 722,

Talie 7.7 Short period damping ratio ([} limits

Catmpory A and T flight phases Category B flight phases
Levd 1 035 130 030 200
Leved 2 025 2090 020 2100
Lewd 3 .15+ TE} TTEAE TV . ls= WY T TV

" by e mechoced ai atiitedes alwowe 30000 11 if appooved By the proosring, activiny.
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Fig. 7.19 MIL-F-8785C short period natural frequency requirements—Category A
flight phases.

7442 MIL-STD-1797A. MIL-STD-1797A provides almost identical
requirements for the short period mode © those presented in MIL-F-8785C,
The erms “equivalent frequency™ and “‘equivalent damping ratio™ are used, as
with MIL-F-8785C, © account for the dynamics experienced by highly augmen-
ted aircraft The concepts of short period natural frequency and damping ratio are
retzined when using these guidelines. The MIL-STD-1797A short period require-
ments are recast in terms of the control anticipation parameter (CAP) over an
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Fig. 720 MIL-F-8785C short period mtuml frequency requiraments —Category B
Right phases.

acceptable range of damping ratios. The CAP is estimated as

0)2
CAP &= —= (7.60)

nja

The CAP is represented on Figs. 7.19, 720, and 7.21 as the sloped boundaries
of the Level 1, 2 and 3 regions MIL-STD-1797A presents short-period
compliance regions in terms of the CAP (which s directly proportional o the
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Fig. 721 MIL-F-8785C short period natmural frequency requirements—Category C
flight phases

square of short period natural frequency) and damping ratio using Fig. 7.23.
The only difference between the MIL-F-8785C requirements and those
presented in Fig. 723 is that MIL-STD-1797A has dropped the lower Level 3
CAP limit For the short period, these equivalent system requirements work
well for highly augmented aircraft as long as the aircraft has a classical-looking
response such as with an a-command, g-command, or g-command system (see
Chapter 9). They do not work well for nonclassical response types such as
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Fig. 7.X S-plane MIL-F-BTRSC short period com plinnoe megion.

ik, = upper oy,
= lower

command or flight path command sysems. Consequently, MIL-STD-1797A
alzo contins requirements on frequency-response shape that are not defined as
a function of the classical dynamic modes discussed in this test?

The level boundaries in Figs. 7.19-721 are specified in MIL-STD-1797A
using Table T8

In practice, the parameter of aguivalent time delay must be considered when
applying either MIL-F-87T85C or MIL-STD-17TA. Only a smapshot of MIL-
STD-1797A has been presented in this section. A dewiled reading of this
document & necessary for application i an actual aircraft design or flight test
eyl st o,

7A.5 Phugoid

MIL-F-873C has only a requirement on damping matio for te phumoid
mode. This requirement is independent of class and category and is presented
in Table 7.9,

For Level 3, the phugoid mode is allowed 0 be unstable as long as the time
to double amplitnde is greater than or equal to 55s. Equation (7.49) can be
usad W compute T;. Under Level 3 conditions, a phugnid with neutral or posi-
tive stbility will abways satisfy the Level 3 requirement The phugoid require-
ment is not very demanding because the phugoid & a low-frequency maode that
generally has litle effect on precizion msks. The pilot typically has aufficient
time to comect for any undesirable phugoid characteristics. However, it can be

important during unattended or divided-attention ion of the aircraft
Figure 7.24 presents the accepiable region for Level | phugoid roots on the s
plane.

74.8 Roll

MIL-FRTESC specifies maximum limits on the roll mode time constant (r,)
which depend on class and category. Table 7.10 presents these reguirements.
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Table 7.10  Maximom mill maode time constant (ssconds)

Flight pha=e s Leyd 1 Lenwel 2 Lena=] 5
categary
A T amd TV 1.0 1.4 10
IT @nal TIT 1.4 3.0 1
B Al 1.4 3.0 10
iC I, M= and TW 1.0 1.4 10
TI-L. @n«l TIT 1.4 3.0 1

Recalling Eq. {7 48), the mll mode ront of the characeristic equation is

Bacause the moll mode is first arder, the root will lie on the negative real axis
and the compliance regon &8 shown in Fig, 725,

By specifying 8 maximmum moll mode time constant, MIL-F-8TE5C is essen-
tially specifying that the siep response of the mll mode must be fBster than or
egual i the ime constant value specified.

74.7 Spiral

MIL-F-8T5C specifies that the spiral mode meet the reguirements for the
time 0 double amplinde of the bank angle as presented in Table 7.11 for bank
angle distrbances of uwp to X deg. Themefore, an unstable spiral & acceptable
if the time © doublk amplinde & slow enouwgh. Obviously, any stable spiral
(negative roeot of the characteristic agquation) is Lewel 1. The normal fight test

Complimee =
regiom I".
-—hl i
S e
-

Fig: 7.25 S-plane MIL-F-BTESC mll mode complinnce megion.
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Table 7.11 MIL-F-BTRSC spiral mode
mui nimum time to double s mplitode

Flight phase Levd 1 Lenee] 2 Ll 3

Catemy
A amed 125 Esx ds
B A= Esx ds

approach o evaluste the spiral is to trim the aircraft for wings-level, 2em-yaw
rae fight and then bank the aircrsft to & 20-des moll angle and neutralize the
controls, If the time to 40des is less than the time specified in Table 7.11,
then the spiral requirements of MIL-F-8TE5C are mot met.

Recalling Eq. {749), the spiral mode moot of the chamcteristic for an
unstable spiral s equal to

. 0693
ol — ?_2

Therefore, the compliance regon for the spiral oot in the 5 plane becomes
everything on the real axis to the left of:

_ 0693
LE
The spiral compliance region is shown in Fig. 726,

74.8 Dutch Roll

The MIL-F-8785C requirements for the dutch roll comnsist of a minimum [,
a mininum g, and a minimomn Joeyy, 858 shown in Table T.12, The able must

Commlimmce o
R piea "'.I
Y
.
‘—H R
" {1693
T

Fig.- 7.36 MIL-F-ETRSC spiral complinnce region.
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Table 7.1 Minimum dutch mll Fegquency mnd dianmpd ng

Flight phass *m mmam &fimimamm i i e
Levd CEREITY Class ¥ Cume ™ rmd s g, md)'s
A DD, OA, RE, TE 1, T, TL amd TV 4 0.4 1.0
R, FF, and A5)
A I and TV 9 035 1.0
1 I and T mls 035 .4
B Al s 0.1s .4
iC I, T, amd TW s 0.1s 1.0
-1 =nd TO 0E 0.10 .4
. Al Al iz 005 4
Al Al 0 —_ .4

= The gowemving da rogring, pe i e (5 tha yislding fhe lavger valme of &, socepd tbata £, of 6.7 i
o= mea witreearn Tagairad dor Cloess 01 acmf

be modified if wd|d/Bloe > 20 rad’ /s’ by incressing the [wy reguirement
{details are provided in MIL-F-BTR5C).

A peneralized compliance region for dutch mll roots is presented as the
shaded area of Fig, T.27.

Example T.15
For the Lear Jet in cruise using the same fAight condition (40,000 ft and
M=0.T) and data used in Exasmples T.10 and 7.12, dewemine if the aircraft

satisfies the dynamic stability requirements of MIL-F-8TBSC for Level L
T start the evalustion, we must first determine the aircraft class and cate-

gory:

Class 1, Category B {Cruise)

':rn ';-'! Mo
e \
- .--_—'-.1 -'i duag Ciy, Specifies a time
.1
rispesancas hecause
|
flr £ Lar,
i R
Pote: AllL3
—ty J—%JZ e e
— / F Mt s asi

Fig. 7.I7 S-plane MIL-F-BTRSC dintch roll complia noe region.
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Longitudinal Modes of Motion:
Shaort Perivd:
From Example 7.10,

wm =2 836mdfs

Ay

& =0.335

Referring to Table 7.7, because [, = 0.3 and [, < 2.0, the Lear Jet passes the
damping ratio requirement at Level 1.

To evaluse w,  for compliance, we need to delermine nfz. From Egq
(7.59), and knowing that Z, is equal o —451.7 ft/s® for this aircraft and flight
condition, we have

Z 4317

i §

Using Fig. 7.20 for a Category B Flight Fhase, we plot @, al an nfa=
14.03, The point falk within the Level 1 compliance region and therefore
passes the Level | short pericd natural frequency requirement, Because the

Lear Jet both short peried dynamic stability requirements at Lewvel 1,
the Lear Jet's short period dynamic characteristics are considered Level 1.

Phugoid:
From Examgple 7.10,

[y = 0L076

Referring & Table 7.9, {ppy = 0.04 and the Level | phugoid requirement is

The Lear Jet (at this flight condition), therefore, meets the MIL-F-8T85C
Level 1 dynamic stability requirements for the longitudinal modes of motion
(short peried and phugoid).

Lateral- Direc Sonal Modes of Morion:

Ral -
From E::ample T.12,

. =1972s

Uszing Table 7.10 for Category B, = 1.45 and it faik the Level 1 reguire-
ment, Because ¢, < 35, it passes Level 2. Therefore, the roll mode is Level 2,

Spirel:
From Example 7.12, the spiral mode is stble (s = —0.00101) with a time
constant of

, =901.8s
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Because the spiral is stable, the time-iy double-amplitude requirements of
Table 7.11 are aviomatically met, Therefore the Lear Jet spiral mode passes the
Level 1 MIL-F-BTR5C dynamic stahility requirement

Duitch Roll:

From Example 7,12,

wy = 1.168 rad/s
{pp = 0036

Referring © Table 7.12, we will look at the dukch roll damping ratio require-
ment fird,

Cpp = 0.036 < 0.08,
50 it lrils Level 1. Because
Cpp = 0036 = 0.02

it passes Level 2,
We will next look at the Table 7.12 requirement for [ppony, . This product
must be greater than 0,13 to pass Level 1. For our case,

[optoy,, = 00582 < 0.15

therefore, it fads Level | for this requirement Because [ppoy > 005 i

barely passes Level 2.
Finally, we must look at te dukch roll natural frequency requirement in

Tabke 7.12. We have

ay, = 1.618radfs = 0.4 rad/s

therefore, the Lear Jet meets the Lewel 1 dutch roll natural frequency require-
ment,

The Lear Jet dutch roll mode is rated Lewel 2 based on failing the Level 1
Cppiity,, dynamic stability requirement in MIL-F-8T83C,

The Lear Jet laterabdirectional mode is rated Level 2 based on both the
dutch roll and roll mode characteristics being rated Level 2.

Overall, the Lear Jet mees MIL-F-B7R3C Level 2 dynamic stability require-
ments because of the dutch moll and roll mode characteristics,
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Dynamic stability
The dynamic stability of an aircraft refers to how the aircraft behaves after it has been disturbed

following steady non-oscillating flight,
Types of dynamic stability

It has two types

a) Longitudinal mode

i) Phugoid (longer period) oscillations
if) Short period oscillations

b) Lateral- directional modes

i) Roll subsidence mode
ii) Dutch roll mode

iii) Spiral divergence
a) Longitudinal mode

Oscillating motions can be described by two parameters, the period of time required for one complete
oscillation, and the time required to damp to half-amplitude, or the time to double the amplitude for a
dynamically unstable motion. The longitudinal motion consists of two distinct oscillations, a long-
period oscillation called a phugoid mode and a short-period oscillation referred to as the short-period

mode.

i) Phugoid (longer period) oscillations

The longer period mode, called the “"phugoid mode™ is the one in which there is a large-amplitude
variation of air-speed, pitch angle, and altitude, but almost no angle-of-attack variation. The phugoid
oscillation is really a slow interchange of kinetic energy (velocity) and potential energy (height) about
some equilibrium energy level as the aircraft attempts to re-establish the equilibrium level-flight
condition from which it had been disturbed. The motion is so slow that the effects of inertia forces and
damping forces are very low. Although the damping is very weak, the period is so long that the pilot
usually corrects for this motion without being aware that the oscillation even exists. Typically the

period is 20-60 seconds. This oscillation can generally be controlled by the pilot.
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ii) Short period oscillations

With no special name, the shorter period mode is called simply the "short-period mode". The short-
period mode is a usually heavily damped oscillation with a period of only a few seconds. The motion is
a rapid pitching of the aircraft about the center of gravity. The period is so short that the speed does not
have time to change, so the oscillation is essentially an angle-of-attack variation. The time to damp the
amplitude to one-half of its value is usually on the order of 1 second. Ability to quickly self damp

when the stick is briefly displaced is one of the many criteria for general aircraft certification.

b) Lateral- directional modes

"Lateral-directional” modes involve rolling motions and yawing motions. Motions in one of these axes
almost always couples into the other so the modes are generally discussed as the "Lateral-Directional

modes".

There are three types of possible lateral-directional dynamic motion: roll subsidence mode, spiral

mode, and Dutch roll mode.

i) Roll subsidence mode

Roll subsidence mode is simply the damping of rolling motion. There is no direct aerodynamic
moment created tending to directly restore wings-level, i.e. there is no returning "spring force/moment”
proportional to roll angle. However, there is a damping moment (proportional to roll rate) created by
the slewing-about of long wings. This prevents large roll rates from building up when roll-control

inputs are made or it damps the roll rate (not the angle) to zero when there are no roll-control inputs.

Roll mode can be improved by dihedral effects coming from design characteristics, such as high

wings, dihedral angles or sweep angles.

i) Dutch roll mode

The second lateral motion is an oscillatory combined roll and yaw motion called Dutch roll,perhaps
because of its similarity to an ice-skating motion of the same name made by Dutch skaters; the origin
of the name is unclear. The Dutch roll may be described as a yaw and roll to the right, followed by a
recovery towards the equilibrium condition, then an overshooting of this condition and a yaw and roll

to the left, then back past the equilibrium attitude, and so on. The period is usually on the order of 3—15
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seconds, but it can vary from a few seconds for light aircraft to a minute or more for airliners. Damping
is increased by large directional stability and small dihedral and decreased by small directional stability
and large dihedral. Although usually stable in a normal aircraft, the motion may be so slightly damped
that the effect is very unpleasant and undesirable. In swept-back wing aircraft, the Dutch roll is solved
by installing a yaw damper, in effect a special-purpose automatic pilot that damps out any yawing
oscillation by applying rudder corrections. Some swept-wing aircraft have an unstable Dutch roll. If the
Dutch roll is very lightly damped or unstable, the yaw damper becomes a safety requirement, rather
than a pilot and passenger convenience. Dual yaw dampers are required and a failed yaw damper is
cause for limiting flight to low altitudes, and possibly lower Mach numbers, where the Dutch roll
stability is improved.

iii) Spiral divergence

Spiraling is inherent. Most aircraft trimmed for straight-and-level flight, if flown stick-fixed, will
eventually develop a tightening spiral-dive.! If a spiral dive is entered unintentionally, the result

can be fatal.

A spiral dive is not a spin; it starts, not with a stall or from torque but with a random, increasing
roll and airspeed. Without prompt intervention by the pilot, this can lead to structural failure of
the airframe, either as a result of excess aerodynamic loading or flight into terrain. The aircraft
initially gives little indication that anything has changed. The pilot's "down™ sensation continues
to be with respect to the bottom of the airplane, although the aircraft actually has increasingly
rolled off the true vertical. Under VFR conditions, the pilot corrects for this deviation from level
automatically using the true horizon, while it is very small; but in IMC or dark conditions it can
go unnoticed: the roll will increase and the lift, no longer vertical, is insufficient to support the

airplane. The nose drops and speed increases: the spiral dive has begun

The forces involved

Say the roll is to the right. A sideslip develops, resulting in a slip-flow which is right-to-left. Now
examine the resulting forces one at a time, calling any rightward influence yaw-in, leftward yaw-

out, or roll-in or -out, whichever applies. The slip-flow will:

e push the fin, rudder, and other side areas aft of c.g. to the left, causing a right yaw-in,
o push side areas ahead of the c.g. to the left, causing a left yaw-out,

o push the right wingtip up, the left down, a left roll-out owing to the dihedral angle,

o cause the left wing to go faster, the right wing slower, a roll-in,

o push the side areas of the aircraft above the c.g. to the left, a roll-out,
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o push the side areas of the aircraft below the c.g. to the left, a roll-in,

Also, an aerodynamic force is imposed by the relative vertical positions of the fuselage and the
wings, creating a roll-in leverage if the fuselage is above the wings, as in a low wing

configuration; or roll-out if below, as in a high-wing configuration.

A propeller rotating under power will influence the airflow passing it. Its effect depends on
throttle setting (high at high rpm, low at low) and the attitude of the aircraft.

Thus, a spiral dive results from the netting-out of many forces depending partly on the design of
the aircraft, partly on its attitude, and partly on its throttle setting (a susceptible design will spiral
dive under power but may not in the glide).

Recovery

A diving aircraft has more kinetic energy (which varies as the square of speed) than when straight-and-
level. To get back to straight-and-level, the recovery must get rid of this excess energy safely. The
sequence is: Power all off; level the wings to the horizon or, if horizon has been lost, to the
instruments; reduce speed using gentle back-pressure on the controls until a desired speed is reached;
level off and restore power. The pilot should be alert to a pitch up tendency as the aircraft is rolled to

wings level.

The End
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