

## **INSTITUTE OF AERONAUTICAL ENGINEERING**

(Autonomous)

Dundigal, Hyderabad -500 043

### **AERONAUTICAL ENGINEERING**

#### **COURSE DESCRIPTOR**

| Course Title      | AEROSPAC                                                 | AEROSPACE STRUCTURAL DYNAMICS         |   |   |         |  |
|-------------------|----------------------------------------------------------|---------------------------------------|---|---|---------|--|
| Course Code       | AAE015                                                   | AAE015                                |   |   |         |  |
| Programme         | B.Tech                                                   | B.Tech                                |   |   |         |  |
| Semester          | VII AE                                                   | VII AE                                |   |   |         |  |
| Course Type       | Core                                                     |                                       |   |   |         |  |
| Regulation        | IARE - R16                                               |                                       |   |   |         |  |
|                   | Theory Practical   Lectures Tutorials Credits Laboratory |                                       |   |   | al      |  |
| Course Structure  |                                                          |                                       |   |   | Credits |  |
|                   | 3                                                        | 1                                     | 4 | 3 | 2       |  |
| Chief Coordinator | Dr. Y B Sudhir Sastry, Professor                         |                                       |   |   |         |  |
| Course Faculty    |                                                          | hir Sastry, Profes<br>sh Kumar, Assis |   |   |         |  |

#### I. COURSE OVERVIEW:

The course aim is to teach basic concepts and recent developments related to mechanical vibrations, structural dynamics and vibration control. The course seeks to introduce students to the fundamentals of dynamics by providing an overview on mechanical vibration. Vibrations in machines and structures are typically undesirable as they produce stresses, energy losses and increased bearing loads. They contribute to structural wear and can lead to passenger discomfort in vehicles. This course covers the vibrations of discrete systems and continuous structures and introduces the computational dynamics of linear engineering systems. Learn how to derive equations of motion and design vibration isolation systems. Gain an understanding of the concepts of natural frequencies and mode shapes and their significance. Complete system modeling tasks and formulate equations to measure and ultimately minimize vibrations. The concepts of aero elasticity phenomena, effect of aero elasticity in flight vehicle design.

#### **II.** COURSE PRE-REQUISITES:

| Level | Course Code | Semester | Prerequisites         | Credits |
|-------|-------------|----------|-----------------------|---------|
| UG    | AHS007      | Ι        | Applied physics       | 4       |
| UG    | AME002      | II       | Engineering Mechanics | 4       |
| UG    | AAE002      | III      | Theory of Structures  | 4       |

#### **III. MARKS DISTRIBUTION:**

| Subject                       | SEE Examination | CIA Examination | Total Marks |
|-------------------------------|-----------------|-----------------|-------------|
| Aerospace Structural Dynamics | 70 Marks        | 30 Marks        | 100         |

#### IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| x | Chalk & Talk                                 | √ | Quiz | $\checkmark$ | Assignments | X | MOOCs |
|---|----------------------------------------------|---|------|--------------|-------------|---|-------|
| ✓ | LCD / PPT 🖌 Seminars 🗶 Mini Project 🗸 Videos |   |      |              |             |   |       |
| X | Open Ended Experiments                       |   |      |              |             |   |       |

#### V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

**Semester End Examination (SEE):** The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

| 50 % | To test the objectiveness of the concept.                                                    |
|------|----------------------------------------------------------------------------------------------|
| 50 % | To test the analytical skill of the concept OR to test the application skill of the concept. |

#### **Continuous Internal Assessment (CIA):**

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

|  | Table 1: | Assessment | pattern | for | CIA |
|--|----------|------------|---------|-----|-----|
|--|----------|------------|---------|-----|-----|

| Component          | Theory   |            | Total |
|--------------------|----------|------------|-------|
| Type of Assessment | CIE Exam | Quiz / AAT | Marks |
| CIA Marks          | 25       | 05         | 30    |

#### **Continuous Internal Examination (CIE):**

Two CIE exams shall be conducted at the end of the 8<sup>th</sup> and 16<sup>th</sup> week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video.

#### VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program Outcomes (POs)                                                                                                                                                                                                                                                                                           | Strength | Proficiency assessed<br>by |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| PO 1 | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                         | 3        | Assignment                 |
| PO 2 | <b>Problem analysis</b> : Identify, formulate, review research<br>literature, and analyze complex engineering problems<br>reaching substantiated conclusions using first<br>principles of mathematics, natural sciences, and<br>engineering sciences                                                             | 2        | Seminar                    |
| PO 5 | <b>Design/development of solutions</b> : Design solutions<br>for complex engineering problems and design system<br>components or processes that meet the specified needs<br>with appropriate consideration for the public health and<br>safety, and the cultural, societal, and environmental<br>considerations. | 1        | Seminars                   |

**3** = High; **2** = Medium; **1** = Low

#### VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program Specific Outcomes (PSOs)                        | Strength | Proficiency assessed<br>by |
|-------|---------------------------------------------------------|----------|----------------------------|
| PSO 1 | Professional skills: Able to utilize the knowledge of   | 1        | Assignment                 |
|       | aeronautical/aerospace engineering in innovative,       |          |                            |
|       | dynamic and challenging environment for design and      |          |                            |
|       | development of new products                             |          |                            |
| PSO 2 | Problem-solving Skills: Imparted through simulation     | 2        | Assignment                 |
|       | language skills and general purpose CAE packages to     |          |                            |
|       | solve practical, design and analysis problems of        |          |                            |
|       | components to complete the challenge of airworthiness   |          |                            |
|       | for flight vehicles.                                    |          |                            |
| PSO 3 | Practical implementation and testing skills:            | 1        | Laboratory                 |
|       | Providing different types of in house and training and  |          |                            |
|       | industry practice to fabricate and test and develop the |          |                            |
|       | products with more innovative technologies              |          |                            |

|       | Program Specific Outcomes (PSOs)                      | Strength | Proficiency assessed<br>by |
|-------|-------------------------------------------------------|----------|----------------------------|
| PSO 4 | Successful career and entrepreneurship: To prepare    | -        | -                          |
|       | the students with broad aerospace knowledge to design |          |                            |
|       | and develop systems and subsystems of aerospace and   |          |                            |
|       | allied systems and become technocrats.                |          |                            |
|       | 2 - High 2 - Modium 1 - Low                           |          |                            |

**3** = High; **2** = Medium; **1** = Low

#### **VIII. COURSE OBJECTIVES :**

| The cours | The course should enable the students to:                                                                                                                                                                     |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Ι         | Demonstrate the knowledge of mathematics, science, and engineering by developing the equations of motion for vibratory systems and solving for the free and forced response.                                  |  |  |  |  |
| II        | Understand to identify, formulate and solve engineering problems. This will be<br>accomplished by having students model, analyze and modify a vibratory structure order to<br>achieve specified requirements. |  |  |  |  |
| III       | Introduce to structural vibrations which may affect safety and reliability of engineering systems.                                                                                                            |  |  |  |  |
| IV        | Describe structural dynamic and steady and unsteady aerodynamics aspects of airframe and its components of space structures.                                                                                  |  |  |  |  |

#### IX. COURSE OUTCOMES (COs):

| COs  | Course Outcome             | CLOs  | Course Learning Outcome                                |
|------|----------------------------|-------|--------------------------------------------------------|
| CO 1 | Understand the concept     | CLO 1 | Apply principles of engineering, basic science, and    |
|      | of vibrations, equation of |       | mathematics (including multivariate calculus and       |
|      | motion, response to        |       | differential equations) to model, analyze, design, and |
|      | harmonic excitation,       |       | realize physical systems, components or processes,     |
|      | impulsive excitation, step |       | and work professionally in mechanical systems areas.   |
|      | excitation, periodic       | CLO 2 | Become proficient in the modeling and analysis of      |
|      | excitation (Fourier        |       | one degree of freedom systems - free vibrations,       |
|      | series), Fourier           |       | transient and steady-state forced vibrations, viscous  |
|      | transform), Laplace        |       | and hysteric damping.                                  |
|      | transform (Transfer        | CLO 3 | Understanding the response to periodic excitation      |
|      | Function).                 |       | (Fourier series ,Fourier transform)                    |
|      |                            | CLO 4 | Using Laplace transforms and the Convolutional         |
|      |                            |       | integral formulations to understand shock spectrum     |
|      |                            |       | and system response for impact loads.                  |
| CO 2 | Remember and describe      | CLO 5 | Become proficient in the modeling and analysis of      |
|      | the concept of Eigen       |       | multi-dof systems - Lagrange's equations, reduction    |
|      | value problem, damping     |       | to one-dof systems for proportionally damped           |
|      | effect; Modeling of        |       | systems, modal analysis, vibration absorbers,          |
|      | continuous systems as      |       | vibration transmission, Fourier transforms.            |
|      | multi-degree-of-freedom    | CLO 6 | Convert the physical domain to mathematical            |
|      | systems, equations of      |       | formulation and development of governing equation      |
|      | motion of undamped         |       | based on number of masses in the system.               |
|      | systems in matrix form,    | CLO 7 | Understanding the phenomenon of generalized            |
|      | unrestrained systems,      |       | coordinates and generalized forces, Lagrange's         |
|      | free and forced vibration  |       | equations to derive equations of motion                |

| COs  | Course Outcome                                                                                                                                      | CLOs             | Course Learning Outcome                                                                                                                                                                     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | vibration of undamped<br>systems; using modal<br>analysis, forced vibration<br>of viscously damped<br>systems.                                      | CLO 8            | Apply the Eigen value problem and describe<br>expansion theorem, unrestrained systems, free<br>vibration of undamped systems; forced vibration of<br>undamped systems                       |
| CO 3 | Determine and apply the<br>concept of nonlinear<br>vibrations physical                                                                              | CLO 9            | Understand the concepts of nonlinear vibrations,<br>simple examples of nonlinear systems, physical<br>properties of nonlinear systems                                                       |
|      | properties of nonlinear<br>systems single-degree-of-<br>freedom and multi-                                                                          | CLO 10           | Formulate simple problem solutions of the equation<br>of motion of a single-degree-of-freedom nonlinear<br>system, multi-degree-of-freedom nonlinear systems.                               |
|      | degree-of-freedom<br>nonlinear systems.<br>Random vibrations;,<br>single-degree-of-freedom                                                          | CLO 11           | Understand the concept of random processes,<br>probability distribution and density functions,<br>description of the mean values in terms of the<br>probability density function            |
|      | response, response to a white noise                                                                                                                 | CLO 12           | Understand the concept of autocorrelation function,<br>power spectral density function, properties of the<br>power spectral density function, white noise and<br>narrow and large bandwidth |
| CO 4 | Describe about<br>transverse vibration of a<br>string or cable,                                                                                     | CLO 13           | Understand the concepts of transverse vibration of a string or cable                                                                                                                        |
|      | longitudinal vibration of<br>a bar or rod, torsional<br>vibration of shaft or rod,                                                                  | CLO 14           | Derive the equations longitudinal vibration of a bar<br>or rod, torsional vibration of shaft or rod,                                                                                        |
|      | lateral vibration of<br>beams, the Rayleigh-Ritz<br>method.                                                                                         | CLO 15           | Solve the problems for lateral vibration of beams, and the Rayleigh-Ritz method.                                                                                                            |
| CO 5 | Understand the concept<br>of Collar's aero elastic<br>triangle, static aero                                                                         | CLO 16<br>CLO 17 | Understand the concepts of Collar's aeroelastic<br>triangle, static aeroelasticity phenomena<br>Understand the concept of dynamic aeroelasticity                                            |
|      | elasticity aero elastic<br>problems at transonic<br>speeds, active flutter<br>suppression. Effect of<br>aero elasticity in flight<br>vehicle design | CLO 18           | phenomena<br>Calculate the aeroelastic problems at transonic<br>speeds, aeroelastic tailoring, active flutter<br>suppression. Effect of aeroelasticity in flight vehicle<br>design.         |

### X. COURSE LEARNING OUTCOMES (CLOs):

| CLO<br>Code | CLO's | At the end of the course, the student will have<br>the ability to:                                                                                                                                                                                                                 | PO's<br>Mapped | Strength of<br>Mapping |
|-------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|
| AAE015.01   | CLO 1 | Apply principles of engineering, basic science, and<br>mathematics (including multivariate calculus and<br>differential equations) to model, analyze, design,<br>and realize physical systems, components or<br>processes, and work professionally in mechanical<br>systems areas. | PO 1           | 3                      |
| AAE015.02   | CLO 2 | Become proficient in the modeling and analysis of<br>one degree of freedom systems - free vibrations,<br>transient and steady-state forced vibrations,<br>viscous and hysteric damping.                                                                                            | PO 1           | 3                      |

| CLO             | CLO's         | At the end of the course, the student will have                                                        | PO's       | Strength of |
|-----------------|---------------|--------------------------------------------------------------------------------------------------------|------------|-------------|
| Code            |               | the ability to:                                                                                        | Mapped     | Mapping     |
| AAE015.03       | CLO 3         | Understanding the response to periodic excitation                                                      | PO 1, PO 2 | 3           |
|                 |               | (Fourier series ,Fourier transform)                                                                    |            |             |
| AAE015.04       | CLO 4         | Using Laplace transforms and the Convolutional                                                         | PO 1, PO 2 | 3           |
|                 |               | integral formulations to understand shock spectrum                                                     |            |             |
|                 |               | and system response for impact loads.                                                                  |            |             |
| AAE015.05       | CLO 5         | Become proficient in the modeling and analysis of                                                      | PO 1, PO 2 | 3           |
|                 |               | multi-dof systems - Lagrange's equations,                                                              |            |             |
|                 |               | reduction to one-dof systems for proportionally                                                        |            |             |
|                 |               | damped systems, modal analysis, vibration                                                              |            |             |
|                 |               | absorbers, vibration transmission, Fourier                                                             |            |             |
|                 | <b>ar o c</b> | transforms.                                                                                            |            |             |
| AAE015.06       | CLO 6         | Convert the physical domain to mathematical                                                            | PO 2       | 2           |
|                 |               | formulation and development of governing                                                               |            |             |
| 4 4 5 0 1 5 0 5 | GT 0 7        | equation based on number of masses in the system.                                                      |            | 2           |
| AAE015.07       | CLO 7         | Understanding the phenomenon of generalized coordinates and generalized forces, Lagrange's             | PO 1, PO 2 | 3           |
|                 |               |                                                                                                        |            |             |
| AAE015.08       | CLO 8         | equations to derive equations of motion.<br>Apply the Eigen value problem and describe                 | PO 2, PO 5 | 2           |
| AAL015.08       | CLU 8         | expansion theorem, unrestrained systems, free                                                          | 102,103    | 2           |
|                 |               | vibration of undamped systems; forced vibration of                                                     |            |             |
|                 |               | undamped systems.                                                                                      |            |             |
| AAE015.09       | CLO 9         | Understand the concepts of nonlinear vibrations,                                                       | PO 2, PO 5 | 2           |
| 11112013.09     | CLO )         | simple examples of nonlinear systems, physical                                                         | 102,105    | 2           |
|                 |               | properties of nonlinear systems                                                                        |            |             |
| AAE015.10       | CLO 10        | Formulate simple problem solutions of the                                                              | PO 2       | 2           |
|                 |               | equation of motion of a single-degree-of-freedom                                                       | _          |             |
|                 |               | nonlinear system, multi-degree-of-freedom                                                              |            |             |
|                 |               | nonlinear systems.                                                                                     |            |             |
| AAE015.11       | CLO 11        | Understand the concept of random processes,                                                            | PO 1       | 3           |
|                 |               | probability distribution and density functions,                                                        |            |             |
|                 |               | description of the mean values in terms of the                                                         |            |             |
|                 |               | probability density function                                                                           |            |             |
| AAE015.12       | CLO 12        | Understand the concept of autocorrelation                                                              | PO 1       | 3           |
|                 |               | function, power spectral density function,                                                             |            |             |
|                 |               | properties of the power spectral density function,                                                     |            |             |
| A A E 015 12    | CL 0 12       | white noise and narrow and large bandwidth                                                             | DO 1       | 2           |
| AAE015.13       | CLO 13        | •                                                                                                      | PO 1       | 3           |
| AAE015.14       | CLO 14        | a string or cable<br>Derive the equations longitudinal vibration of a bar                              | PO 2       | 2           |
| AAE013.14       | CLO 14        | or rod, torsional vibration of shaft or rod                                                            | FO 2       | 2           |
| AAE015.15       | CLO 15        |                                                                                                        | PO 1, PO 2 | 3           |
| AAL015.15       | CLO IJ        | and the Rayleigh-Ritz method.                                                                          | 101,102    | 5           |
| AAE015.16       | CLO 16        |                                                                                                        | PO 1, PO 5 | 2           |
| 1111013.10      |               | triangle, static aeroelasticity phenomena                                                              | 101,105    | 2           |
| AAE015.17       | CLO 17        | Understand the concept of dynamic aeroelasticity                                                       | PO 1, PO 5 | 2           |
|                 | 52517         | phenomena                                                                                              | 101,105    | 2           |
|                 | CL 0.10       | •                                                                                                      |            | 2           |
| AAE015.18       | CLO 18        | Calculate the aeroelastic problems at transonic                                                        | PO 2, PO 5 | 2           |
|                 |               | speeds, aeroelastic tailoring, active flutter                                                          |            |             |
|                 |               | suppression. Effect of aeroelasticity in flight vehicle design.                                        |            |             |
|                 |               | $\mathbf{v} = \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M}$ |            |             |

3= High; 2 = Medium; 1 = Low

| Course            | Prog | gram Outcom | es (POs) | Program Specific Outcomes (PSOs) |       |       |  |
|-------------------|------|-------------|----------|----------------------------------|-------|-------|--|
| Outcomes<br>(COs) | PO 1 | PO 2        | PO 5     | PSO 1                            | PSO 2 | PSO 3 |  |
| CO 1              | 3    | 2           | -        | -                                | 2     | -     |  |
| CO 2              | 3    | 2           | 1        | 1                                | 2     | -     |  |
| CO 3              | 3    | 2           | 1        | 1                                | -     | 1     |  |
| CO 4              | 3    | 2           | -        | 1                                | -     | 1     |  |
| CO 5              | 3    | 2           | 1        | -                                | 2     | 1     |  |

# XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

**3**= High; **2** = Medium; **1** = Low

#### XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| CLOs   |     | Program Outcomes (POs) |     |     |     |     |     |     | Program Specific<br>Outcomes (PSOs) |      |      |             |      |      |      |      |
|--------|-----|------------------------|-----|-----|-----|-----|-----|-----|-------------------------------------|------|------|-------------|------|------|------|------|
|        | PO1 | PO2                    | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9                                 | PO10 | PO11 | <b>PO12</b> | PSO1 | PSO2 | PSO3 | PSO4 |
| CLO 1  | 3   |                        |     |     |     |     |     |     |                                     |      |      |             |      |      |      |      |
| CLO 2  | 3   |                        |     |     |     |     |     |     |                                     |      |      |             |      |      |      |      |
| CLO 3  | 3   | 2                      |     |     |     |     |     |     |                                     |      |      |             |      |      |      |      |
| CLO 4  | 3   | 2                      |     |     |     |     |     |     |                                     |      |      |             |      | 2    |      |      |
| CLO 5  | 3   | 2                      |     |     |     |     |     |     |                                     |      |      |             |      | 2    |      |      |
| CLO 6  |     | 2                      |     |     |     |     |     |     |                                     |      |      |             | 1    |      |      |      |
| CLO 7  | 3   | 2                      |     |     |     |     |     |     |                                     |      |      |             | 1    |      |      |      |
| CLO 8  |     | 2                      |     |     | 1   |     |     |     |                                     |      |      |             |      |      |      |      |
| CLO 9  |     | 2                      |     |     | 1   |     |     |     |                                     |      |      |             | 1    | 2    |      |      |
| CLO 10 | 3   | 2                      |     |     |     |     |     |     |                                     |      |      |             |      |      |      |      |
| CLO 11 | 3   |                        |     |     |     |     |     |     |                                     |      |      |             |      |      |      |      |
| CLO 12 | 3   |                        |     |     |     |     |     |     |                                     |      |      |             | 1    |      | 3    |      |
| CLO 13 | 3   |                        |     |     |     |     |     |     |                                     |      |      |             |      |      |      |      |
| CLO 14 |     | 2                      |     |     |     |     |     |     |                                     |      |      |             |      |      |      |      |
| CLO 15 | 3   | 2                      |     |     |     |     |     |     |                                     |      |      |             | 1    |      | 1    |      |
| CLO 16 | 3   |                        |     |     | 1   |     |     |     |                                     |      |      |             |      |      |      |      |
| CLO 17 | 3   |                        |     |     | 1   |     |     |     |                                     |      |      |             |      |      |      |      |
| CLO 18 |     | 2                      |     |     | 1   |     |     |     |                                     |      |      |             |      | 2    | 1    |      |
|        | 2_1 | High                   |     | Mod |     | 1_1 |     |     |                                     |      |      |             |      |      |      |      |

**3** = High; **2** = Medium; **1** = Low

| CIE Exams               | PO1, PO2,<br>PO5, PSO1,<br>PSO2,<br>PSO3 | SEE<br>Exams    | PO1, PO2,<br>PO5,PSO1,<br>PSO2,<br>PSO3 | Assignments     | PO 1,<br>PSO1,<br>PSO2 | Seminars      | PO 2,<br>PO 5 |
|-------------------------|------------------------------------------|-----------------|-----------------------------------------|-----------------|------------------------|---------------|---------------|
| Laboratory<br>Practices | PSO3                                     | Student<br>Viva | -                                       | Mini<br>Project | -                      | Certification | -             |
| Term Paper              | -                                        |                 |                                         |                 |                        |               |               |

#### XIII. ASSESSMENT METHODOLOGIES – DIRECT

#### XIV. ASSESSMENT METHODOLOGIES - INDIRECT

| ~ | Early Semester Feedback                | $\checkmark$ | End Semester OBE Feedback |
|---|----------------------------------------|--------------|---------------------------|
| X | Assessment of Mini Projects by Experts |              |                           |

#### XV. SYLLABUS

| 1                                                                                |                                                                                                          |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Unit-I                                                                           | SINGLE-DEGREE-OF-FREEDOM LINEAR SYSTEMS                                                                  |  |  |  |  |  |  |  |
| Introduction to                                                                  | theory of vibration, equation of motion, free vibration, response to harmonic excitation,                |  |  |  |  |  |  |  |
| response to an                                                                   | response to an impulsive excitation, response to a step excitation, response to periodic excitation      |  |  |  |  |  |  |  |
| (Fourier series)                                                                 | ), response to a periodic excitation (Fourier transform), Laplace transform (Transfer                    |  |  |  |  |  |  |  |
| Function).                                                                       |                                                                                                          |  |  |  |  |  |  |  |
| Unit-II                                                                          | MULTI-DEGREE-OF-FREEDOM LINEAR SYSTEMS                                                                   |  |  |  |  |  |  |  |
| Equations of n                                                                   | notion, free vibration, the Eigen value problem, response to an external applied load,                   |  |  |  |  |  |  |  |
| damping effect                                                                   | ; Modeling of continuous systems as multi-degree-of-freedom systems, using Newton's                      |  |  |  |  |  |  |  |
| second law to                                                                    | derive equations of motion, influence coefficients - stiffness influence coefficients,                   |  |  |  |  |  |  |  |
| flexibility influ                                                                | ence coefficients, inertia influence coefficients; potential and kinetic energy expressions              |  |  |  |  |  |  |  |
| in matrix form,                                                                  | generalized coordinates and generalized forces, Lagrange's equations to derive equations                 |  |  |  |  |  |  |  |
| of motion, equa                                                                  | tions of motion of undamped systems in matrix form, eigenvalue problem, solution of the                  |  |  |  |  |  |  |  |
| Eigen value pr                                                                   | oblem, expansion theorem, unrestrained systems, free vibration of undamped systems;                      |  |  |  |  |  |  |  |
| forced vibratio                                                                  | n of undamped systems using modal analysis, forced vibration of viscously damped                         |  |  |  |  |  |  |  |
| systems.                                                                         |                                                                                                          |  |  |  |  |  |  |  |
| Unit-III                                                                         | NONLINEAR AND RANDOM VIBRATION                                                                           |  |  |  |  |  |  |  |
| Introduction to                                                                  | nonlinear vibrations, simple examples of nonlinear systems, physical properties of                       |  |  |  |  |  |  |  |
| nonlinear syste                                                                  | ms, solutions of the equation of motion of a single-degree-of-freedom nonlinear system,                  |  |  |  |  |  |  |  |
| multi-degree-of                                                                  | F-freedom nonlinear systems.                                                                             |  |  |  |  |  |  |  |
| Introduction to                                                                  | random vibrations; classification of random processes, probability distribution and                      |  |  |  |  |  |  |  |
| density function                                                                 | ns, description of the mean values in terms of the probability density function, properties              |  |  |  |  |  |  |  |
| of the autocorre                                                                 | elation function, power spectral density function, properties of the power spectral density              |  |  |  |  |  |  |  |
| function, white                                                                  | noise and narrow and large bandwidth, single-degree-of-freedom response, response to a                   |  |  |  |  |  |  |  |
| white noise.                                                                     |                                                                                                          |  |  |  |  |  |  |  |
| Unit-IV                                                                          | DYNAMICS OF CONTINUOUS ELASTIC BODIES                                                                    |  |  |  |  |  |  |  |
| Introduction, tr                                                                 | ansverse vibration of a string or cable, longitudinal vibration of a bar or rod, torsional               |  |  |  |  |  |  |  |
| vibration of shaft or rod, lateral vibration of beams, the Rayleigh-Ritz method. |                                                                                                          |  |  |  |  |  |  |  |
| Unit-V                                                                           | INTRODUCTION TO AERO ELASTICITY                                                                          |  |  |  |  |  |  |  |
| Collar's aero el                                                                 | astic triangle, static aero elasticity phenomena, dynamic aero elasticity phenomena, aero                |  |  |  |  |  |  |  |
| elastic problem                                                                  | elastic problems at transonic speeds, aero elastic tailoring, active flutter suppression. Effect of aero |  |  |  |  |  |  |  |
| elasticity in flight vehicle design                                              |                                                                                                          |  |  |  |  |  |  |  |
|                                                                                  |                                                                                                          |  |  |  |  |  |  |  |

#### **Text Books:**

- 1. Bismarck-Nasr, M.N., —Structural Dynamics in Aeronautical Engineeringl, AIAA Education Series, 2<sup>nd</sup> Edition, 1999.
- 2. Rao, S.S., —Mechanical VibrationsI, Prentice-Hall, 5th Edition, 2011.

3. Thomson, W.T., —Theory of vibrations with applications<sup>||</sup>, CBS Publishers, Delhi, 3<sup>rd</sup> Edition, 2002. **Reference Books:** 

1. R.L. Bisplinghoff, H.Ashley, and R.L. Halfmann, —Aero-elasticity, Addison Wesley Publishing Co., Inc., 2<sup>nd</sup> Edition, 1996.

2. Leissa, A.W., Vibration of continuous system, The McGraw-Hill Company, 2<sup>nd</sup> Edition, 2011.

3. Inman, D.J., Vibration Engineering, Prentice Hall Int., Inc., 3<sup>rd</sup> Edition, 2001.

#### **XVI. COURSE PLAN:**

The course plan is meant as a guideline. Probably there may be changes.

| Lecture<br>No | Topics to be covered                                                                                                                                                                    | Course<br>Learning<br>Outcomes<br>(CLOs) | Reference                  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------|
| 1-2           | Introduction to theory of vibration                                                                                                                                                     | CLO 1                                    | T2:1.2-1.13                |
| 3-5           | Equation of motion, free vibration                                                                                                                                                      | CLO 2                                    | T1:2.1-2.2                 |
| 6-7           | Response to harmonic excitation, response to an impulsive excitation                                                                                                                    | CLO 3                                    | T1 : 2.3-2.4,<br>T2:1.10.1 |
| 7-8           | Response to a step excitation, response to periodic excitation (Fourier series)                                                                                                         | CLO 3                                    | T1:1.11.1;<br>T1:2.5-2.6   |
| 9-11          | Response to a periodic excitation (Fourier transform), Laplace transform (Transfer Function).                                                                                           | CLO 4                                    | T1 : 2.7-2.8               |
| 12-13         | Equations of motion, free vibration, the Eigen value problem, response to an external applied load                                                                                      | CLO 5                                    | T1:3.1-3.3                 |
| 15            | Damping effect; Modeling of continuous systems as multi-<br>degree-of-freedom systems, using Newton's second law to<br>derive equations of motion                                       | CLO 6                                    | T1:3.4;<br>T2:6.2-6.3      |
| 15-16         | Influence coefficients - stiffness influence coefficients,<br>flexibility influence coefficients, inertia influence<br>coefficients;                                                    | CLO 6,<br>CLO 9                          | T2: 6.4                    |
| 17            | Potential and kinetic energy expressions in matrix form, generalized coordinates and generalized forces                                                                                 | CLO 7                                    | T2:6.5-6.6                 |
| 18-19         | Lagrange's equations to derive equations of motion, equations<br>of motion of undamped systems in matrix form, eigenvalue<br>problem                                                    | CLO 7,<br>CLO 8                          | T2:6.7-6.9                 |
| 20-22         | Solution of the Eigen value problem, expansion theorem, unrestrained systems, free vibration of undamped systems                                                                        | CLO 7,<br>CLO 8                          | T2:6.10-6.13               |
| 23-25         | Forced vibration of undamped systems using modal analysis, forced vibration of viscously damped systems.                                                                                | CLO 9                                    | T2:6.14-6.15               |
| 26-29         | Introduction to nonlinear vibrations, simple examples of nonlinear systems, physical properties of nonlinear systems                                                                    | CLO 10                                   | T1:5.1-5.3<br>T3:3.3       |
| 30-31         | solutions of the equation of motion of a single-degree-of-<br>freedom nonlinear system, multi-degree-of-freedom nonlinear<br>systems                                                    | CLO 11                                   | T1:5.4-5.5                 |
| 32-34         | Introduction to random vibrations; classification of random<br>processes, probability distribution and density functions,<br>description of the mean values in terms of the probability | CLO 12                                   | T1:6.1-6.4<br>R3:4.4       |

| Lecture<br>No | Topics to be covered                                                                                                                                                                                                                     | Course<br>Learning<br>Outcomes<br>(CLOs) | Reference                       |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------|
|               | density function                                                                                                                                                                                                                         |                                          |                                 |
| 35-36         | Properties of the autocorrelation function, power spectral density function, properties of the power spectral density function, white noise and narrow and large bandwidth, single-degree-of-freedom response, response to a white noise | CLO 12                                   | T1:6.5-6.10<br>R3:5.4<br>T3:4.3 |
| 37-38         | Introduction, transverse vibration of a string or cable                                                                                                                                                                                  | CLO 13                                   | T2:8.1-8.2                      |
| 39-41         | longitudinal vibration of a bar or rod                                                                                                                                                                                                   | CLO 14                                   | T2:8.3                          |
| 42-44         | torsional vibration of shaft or rod                                                                                                                                                                                                      | CLO 14,<br>CLO 15                        | T2:8.4<br>R2:5.3                |
| 45-46         | Lateral vibration of beams, the Rayleigh-Ritz method.                                                                                                                                                                                    | CLO 15                                   | T2:8.5-8.7                      |
| 47-48         | Collar's aero elastic triangle, static aero elasticity phenomena                                                                                                                                                                         | CLO 16                                   | R1:1.2                          |
| 49-51         | Dynamic aero elasticity phenomena, aero elastic problems at transonic speeds                                                                                                                                                             | CLO 17                                   | R1:2.2                          |
| 51-53         | Aero elastic tailoring, active flutter suppression                                                                                                                                                                                       | CLO 18                                   | T1:7.1-7.3<br>R2:1.3            |
| 54-55         | Effect of aero elasticity in flight vehicle design                                                                                                                                                                                       | CLO 18                                   | R1:3.4                          |

# XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

| S No | Description                                                                           | Proposed<br>actions          | Relevance With<br>POS | Relevance With<br>PSOS |
|------|---------------------------------------------------------------------------------------|------------------------------|-----------------------|------------------------|
| 1    | Gain information about the vibrations of landing gear, and other aircraft components. | Seminars /<br>Guest Lectures | PO 1                  | PSO 2                  |
| 2    | Encourage students to perform flatter analysis of aircraft wing.                      | Projects                     | PO 5                  | PSO 2                  |

**Prepared by:** Dr. Y B Sudhir Sastry, Professor Mr. T. Mahesh Kumar, Assistant Professor HOD, AE