

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AUTOMOBILE ENGINEERING

COURSE DESCRIPTOR

Course Title	AUTOM	AUTOMOBILE ENGINEERING						
Course Code	AME020	AME020						
Programme	B.Tech	B.Tech						
Semester	VIII	VIII ME						
Course Type	Core							
Regulation	IARE - R	IARE - R16						
			Theory		Practica	al		
Course Structure	Lectur	es	Tutorials	Credits	Laboratory	Credits		
	3 - 3							
Chief Coordinator	Mr. V K V S Krishnam Raju, Assistant Professor							
Course Faculty			rishnam Raju, A th Reddy, Assista		sor			

I. COURSE OVERVIEW:

This course is intended to introduce structural and operational details of automobile and its systems. Major systems are fuel supply, cooling, ignition, electrical, transmission, suspension, braking and steering. Transport of personnel and goods play an important role in the economy of country and standard of living. Lakhs of vehicles running millions of kilometers. So the man power is required to manufacture and maintain all these vehicles. After completion of this course the students gains adequate knowledge either to work in manufacturing or maintenance sector of automobiles.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AME007	IV	Applied Thermodynamics	4
UG	AAE009	IV	Kinematics of machinery	4
UG	AAE011	V	Dynamics of machinery	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Automobile Engineering	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	>	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component	Tì	Total Marks	
Type of Assessment	CIE Exam	Quiz / AAT	Total Walks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part—A shall have five compulsory questions of one mark each. In part—B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be

answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineeringfundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Assignments& Projects
PO 3	Design/ development of solutions : Competence to design a system, component or process to meet societal needs within realistic constraints.	1	Assignments
PO 5	Modern tool usage: An ability to formulate solve complex engineering problem using modern engineering and information Technology tools.	1	Assignments& Projects
PO 6	The engineer and society: To utilize the engineering practices, techniques, skills to meet needs of the health, safety, legal, cultural and societal issues.	2	Assignments& Seminars

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: To produce engineering professional capable of synthesizing and analyzing mechanical systems including allied engineering streams.	3	Projects / Seminars
PSO 2	Problem solving skills: An ability to adopt and integrate current technologies in the design and manufacturing domain to enhance the employability.	1	Projects
PSO 3	Successful career and Entrepreneurship: To build the nation, by imparting technological inputs and managerial skills to become technocrats.	3	Projects

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES:

The cour	The course should enable the students to:					
I	Understand the function of various parts of automobile, features of fuel supply systems for S.I and C.I engines.					
II	Distinguish the features of various types of cooling, ignition and electrical systems.					
III	Analyze the working principles and operations details of transmission and suspension systems.					
IV	Recognize the working of various braking and steering systems.					
V	Summarize the ways and means of reducing the emissions from automobiles.					

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
	Understanding Automobile engines, fuel supply system, injection components.	CLO 1	Understand the basic working of Auto mobile and different automobile components.
CO 1		CLO 2	Understand the importance of lubrication system in automobile.
		CLO 3	Compare different fuel injection system and advantages of each individual and concept of electronic controlled fuel injection.
	Understanding of ignition systems,	CLO 4	Compare the different cooling processes in I.C engines, working of radiator and cooling accessories.
CO 2	cooling processes and Electrical system.	CLO 5	Analyse the different spark ignition system advantages of each individual system.
		CLO 6	Understand the working of different automobile components like lighting system, horn, wiper, fuel gauge, temperature indicator.
	Understanding the working of transmission and suspension systems of various automobiles.	CLO 7	Understand the different working principles of clutches, and fly wheel.
CO 3		CLO 8	Analyse the transmission systems like gear boxes, propeller shafts, universal joints, differential gear boxes.
		CLO 9	Explain the shock absorbers, suspension system and mechanisms.
	Understanding the working of braking and	CLO 10	Compare the types of braking system, working principles
CO 4	steering systems of various automobiles.	CLO 11	Explain the steering system and components of steering system.
		CLO 12	Explain the steering mechanisms, techniques to improve better steering.
	Understanding the national pollution	CLO 13	Understand the importance of pollution controls, pollution control techniques.
CO 5	standards and incorporating emission	CLO 14	Understand the importance of alternative fuels to reduce the environment emotions.
	control techniques. Usage of alternating fuels.	CLO 15	Analyse the different alternative energy sources to reduce the environment emotions.

X. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will	PO's	Strength of
Code		have the ability to:	Mapped	Mapping
AME020.01	CLO 1	Understand the basic working of Auto mobile	PO 1	2
AME020.01	CLO	and different automobile components	PO 3	2
AME020.02	CLO 2	Understand the importance of lubrication system in automobile	PO 1	1
		Compare different fuel injection system and	PO 1	1
AME020.03	CLO 3	advantages of each individual and Concept	PO 3	2
		electronic controlled fuel injection	PO 5	3
AME020.04	CLO 4	Compare the different cooling processes in I.C engines, working of radiator and cooling accessories	PO 1	2
AME020.05	CLO 5	Analyse the different spark ignition system advantages of each individual system	PO 1	2
		Understand the working of different	PO 1	3
AME020.06	CLO 6	automobile components like lighting system,	PO 8	1 1
		horn, wiper, fuel gauge, temperature indicator	100	1
AME020.07	CLO 7	Understand the different working principles	PO 3	1
AMEUZU.U7	CLO /	of clutches, and fly wheel	PO 5	3

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AME020.08	CLO 8	Analyse the transmission systems like gear boxes, propeller shafts, universal joints, differential gear boxes	PO 1 PO 3	3 3
AME020.09	CLO 9	Explain the shock absorbers, suspension system and mechanisms to use for this	PO 1 PO 6	2 3
AME020.10	CLO 10	Compare the types of braking system, working principles	PO 1 PO 3	3 2
AME020.11	CLO 11	Explain the steering system and components of steering system	PO 1	3
AME020.12	CLO 12	Explain the steering mechanisms, techniques to improve better steering	PO 1	3
AME020.13	CLO 13	Understand the importance of pollution controls, pollution control techniques	PO 6	3
AME020.14	CLO 14	Understand the importance of alternative fuels to reduce the environment emotions	PO 6	3
AME020.15	CLO 15	Analyse the different alternative energy sources to reduce the environment emotions	PO 6	3

3 = High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course]	Program Ou	itcomes (PC	Program Specific Outcomes (PSOs)			
Outcomes (COs)	PO1	PO3	PO5	PO6	PSO1	PSO2	PSO3
CO 1	2	2	3		2	1	3
CO 2	3				3	3	
CO 3	3	3	3	3	2	2	
CO 4	3	2			3		
CO 5				3		3	

3 = High; 2 = Medium; 1 = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)								Program Specific Outcomes (PSOs)						
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	2		2										1	1	3
CLO 2	1												1		
CLO 3	1		2		3								2		
CLO 4	2												1	3	
CLO 5	2													1	

Course Learning	Program Outcomes (POs)									Program Specific Outcomes (PSOs)					
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 6	3												3		
CLO 7			1		3								1		
CLO 8	3		3										2	1	
CLO 9	2					3								2	
CLO 10	3		2										3		
CLO 11	3												3		
CLO 12	3												3		
CLO 13						3								2	
CLO 14						3								3	
CLO 15						3								3	

3 = High; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1 PO 3 PO 5 PO 6 PSO1 PSO2	SEE Exams	PO 1 PO 3 PO 5 PO 6 PSO1 PSO2	Assignments	PO 1 PO 3 PO 5 PO 6	Seminars	PO 6
Laboratory Practices	-	Student Viva	PO 1	Mini Project	PO 1 PO 5	Certification	ı
Term Paper	-						

XIV. ASSESSMENT METHODOLOGIES-INDIRECT

•	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

UNIT-I	INTRODUCTION
Introduction to	automobile engineering chassis and body components, types of automobile engines, engine

lubrication, engine servicing; Fuel system; spark ignition engine fuel supply systems, mechanical and electrical fuel pump, filters, carburetor types, air filters, petrol injection, multipoint fuel injection(MPFI) and gasoline direct injection systems; Compression ignition engines fuel supply systems, requirement of diesel injection systems, types of injection systems, direct injection systems, indirect injection (IDI) systems, fuel pump, nozzle, spray formation, injection timing, testing of fuel pumps, CRDI and turbocharged direct injection (TDI) systems.

	3 \ / 3
Module -II	COOLING SYSTEM

Cooling requirements, air cooling, water cooling, thermo, water and forced circulation system, radiators types cooling fan, water pump, thermostat, pressure sealed cooling, antifreeze solutions, intelligent cooling; Ignition system: Function of an ignition system, battery ignition system constructional features of storage, battery, contact breaker points, condenser and spark plug, magneto coil ignition system, electronic ignition system using contact breaker, electronic ignition using contact triggers, spark advance and retard mechanism; Electrical system: Charging circuit, generator, current-voltage regulator, starting system, bendix drive mechanism solenoid switch, lighting systems, automatic high beam control, horn, wiper, fuel gauge, oil pressure gauge, engine temperature indicator.

UNIT-III TRANSMISSION AND SUSPENSIONS SYSTEMS

Transmission system: Clutches, principle, types, cone clutch, single plate clutch, multi plate clutch, magnetic and centrifugal clutches, fluid flywheel, gear box, types, sliding mesh, constant mesh, synchro mesh gear boxes, epicyclic gear box, auto transmission, continuous variable transmission over drive, torque converter, propeller shaft, Hotch-Kiss drive, torque tube drive, universal joint, differential, rear axles, types, wheels and tyres.

Suspension system: Objects of suspension systems, rigid axle suspension system, torsion bar, shock absorber, independent suspension system, air suspension system, Daimler-benz vehicle suspension.

UNIT-IV BRAKING AND STEERING SYSTEMS

Braking system: Mechanical brake system, Hydraulic brakes system, Master cylinder, wheel cylinder tandem master cylinder; Requirement of brake fluid, Pneumatic and vacuum brake, anti skid braking (ABS), regenerative braking; Steering system: Steering geometry, camber, castor, king pin, rake, combined angle, toe-in, toe-out, center point steering, types of steering mechanism, power steering, Hydraulic, electronics, Ackerman steering mechanism, Davis steering mechanism, steering gears types, steering linkages, special steering colomuns.

UNIT -V EMISSIONS FROM AUTOMOBILES

Emissions from Automobiles, Pollution standards national and international, various pollution control techniques: Multipoint fuel injection for spark ignition engines, common rail diesel injection, variable valve timing, closed crank cake ventilisation, p[c valus, EGR value, catalytic converters, catalyst window, lambda probe, energy alternatives, solar, photo-voltaic, hydrogen, biomass, alcohols, LPG, CNG, liquid Fuels and gaseous fuels, hydrogen as a fuel for internal combustion engines, their merits and demerits, standard vehicle maintenance practice.

Text Books:

- 1. 1. Willam H Crouse, Donald L. Anglin, —Automobile Engineeringl, McGraw-Hill, 10th Edition, 2006.
- 2. Manzoor, Nawazish Mehdi, Yosuf Ali, —A Text Book Automobile Engineeringl, Frontline Publications, 1st Edition, 2008. 3.
- 3. Dr. Kirpal Singh, —Automobile Engineeringl, Standard Publishersl, 2nd Edition, 2013.

Reference Books:

R.K. Rajput, —A Text Book of Automobile Engineeringl, Laxmi Publications, 1st Edition, 2010.

S. Srinivasan, —Automotive Enginesl, McGraw-Hill, 2nd Edition, 2003

Khalil U Siddiqui, —A Text Book of Automobile Engineering, New Age International, 1st Edition, 2009.

Web References:

1. http://nptel.kmeacollege.ac.in/syllabus/125106002/

E-Text Books:

- 1.http://www.engineeringstudymaterial.net/tag/automotive-engineering-books/\
- 2. www.engineering108.com/.../Automobile_Engineering/Automobile-engineering-ebook

XVI. COURSE PLAN:The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-2	Introduction: Resistance to vehicle motion	CLO 1	T1.4
_	Layout of automobile Chassis and body components		
3	Types of automobile engines	CLO 3	T1.1
4	Engine lubrication, Engine Servicing	CLO 4	T2.1
5	Fuel System in S.I Engines mechanical and electrical, Fuel filters	CLO 3	T2.4
6	Carburetor, Air filters	CLO 1	T2.8
7	Petrol injection, MPFI and GDI Systems	CLO 1	T2.8
8	C.I Engines: Diesel injection systems	CLO 1	T2.9
9	Types of injection systems, DI systems IDI systems, Fuel pump, Nozzle, spray formation	CLO 3	T2.9
10-11	Injection timing, testing of fuel pumps, CRDI and TDI systems	CLO 3	T2.9
12-13	Cooling system: Cooling requirements, Air cooling, Liquid cooling, Thermo, Water and Forced circulation system	CLO 4	T2.5
14	Radiators, cooling fan, water pump	CLO 4	T2.5
15	Thermostat, evaporative cooling-pressure sealed cooling- antifreeze solutions	CLO 4	T2.5
15	Ignition System: Function of an ignition system, battery ignition system	CLO 5	T2.12
17	Storage batteries, auto transformer, contact breaker points.	CLO 5	T2.14
18	Condenser and spark plug-Magneto coil ignition system.	CLO 5	T2.12
19	Electronic ignition system using contact breaker	CLO 5	T2.13
20	Electronic ignition using contact triggers	CLO 5	T2.13
21	Spark advance and retard mechanism.	CLO 5	T2.13
22	Electrical System: Charging circuit, Generator	CLO 6	T2.15
23	Current voltage regulator	CLO 6	T2.15
24	Starting system, bendix drive mechanism	CLO 6	T2.16
25	Solenoid switch, lighting systems, Horn, wiper, fuel gauge	CLO 6	T2.16
26	Oil pressure gauge, engine temperature indicator	CLO 6	T2.6
27	Transmission system:Clutches, principle, types, cone clutch	CLO 7	T1.3
28	Single plate clutch, Multi plate clutch, Magnetic and centrifugal clutches	CLO 7	T1.3
29	Fluid fly wheel-gear boxes, types	CLO 7	T1.3
30	Sliding mesh, constant mesh, synchromesh gear boxes	CLO 7	T1.4
31-32	Epicyclic gear box, over drive torque converter	CLO 7	T1.5
33	Propeller shaft-Hotch kiss drive, Torque tube drive	CLO 7	T1.6
34-35	Universal joint, differential, rear axles	CLO 7	T1.6
36	Wheels and tyres	CLO 9	T1.9

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
37-38	Suspension System:	CLO 9	T1.7
	Objects of suspension systems-rigid axle suspension system and torsion bar		
39-40	Shock absorber, independent suspension system	CLO 9	T1.7
41	Braking system: Mechanical brake system	CLO 10	T1.10
42-43	Hydraulic brake system, Master cylinder, Wheel cylinder	CLO 10	T1.10
44	Requirement of brake fluid, Pneumatic brakes	CLO 10	T1.10
45	Vacuum brakes	CLO 10	T1.11
46	Steering system: Steering geometry	CLO 11	T1.8
47-48	Camber, castor, king pin rake, Combined angle toe in, centre point steering	CLO 11	T1.8
49-50	Ackerman steering mechanism, Davis steering mechanism, steering gears and steering linkages.	CLO 12	T1.8
51-52	Emission from automobiles: pollution standards National and international-pollution control techniques	CLO 13	T2.17
53	Multipoint fuel injection for SI Engines, Common rail diesel injection	CLO 13	T2.17
54-55	Energy alternatives-Solar, Photo-voltaic, hydrogen	CLO 15	T2.7
56-57	Biomass, alcohols, LPG, CNG	CLO 14	T2.17
58-60	Standard vehicle maintenance practice	CLO 14	T2.4

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To improve standards and analyse the concepts	Seminars / Guest Lectures / NPTEL	PO 1	PSO 1
2	Concepts related to thermodynamic laws, working principles of IC Engines	Seminars / /NPTEL	PO 1, PO 3	PSO 1
3	Encourage students to solve real time problems like pollution controls	Guest Lectures	PO 6	PSO 1

Prepared by:

Mr. VKVS Krishnam Raju, Assistant Professor

HOD, ME