Hall Ticket No	Question Paper Code: BAE701
INSTITUTE OF AERONAUTICAL	. ENGINEERING
(Autonomous)	
M.Tech I Semester End Examinations (Regula	ar) - February, 2017
Regulation: IARE–R1	6
INTRODUCTION TO AEROSPACE	ENGINEERING
(Power Electronics and Electric	cal Drives)
Time: 3 Hours	Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

lain those	Briefly exp	e space?	in the	xperience	may	spacecraft	the	that	effects	${\rm the}$	are	What	(a)	1.
[10M]											s?	effects		
[4M]	al history?	onautica	he aer	ne face of t	nged [.]	w they cha	? Ho	oons?	air ball	hot	are	What	(b)	

- 2. (a) What are the different steps involved in wind tunnel testing? Explain each step briefly? [10M]
 - (b) What are the parameters that affect aerodynamic forces?

$\mathbf{UNIT}-\mathbf{II}$

- 3. (a) Explain Bernoulli's principle on airflow and pressure distribution flow over wing section with a neat sketch? [10M]
 - (b) Explain the significance of speed of sound in air? [4M]
- 4. Consider the isentropic air flow over the airfoil sketched in the following figure 1. The free stream pressure, velocity and density are 1.013 bar, 804.7 kmph and $1.23kg/m^3$ respectively. At a given point "A" on the airfoil the pressure is 0.7167 bar. What are the Mach number and the velocity at point "A"?

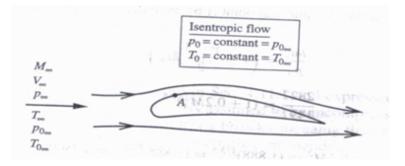


Figure 1

[4M]

$\mathbf{UNIT}-\mathbf{III}$

- 5. (a) Briefly describe about various types of drag acting on aircraft? [8M]
 - (b) What is meant by compressibility drag and explain the prediction of drag divergence Mach number? [6M]
- 6. Consider a thin supersonic airfoil with chord length c = 1.524m in a Mach 3 free stream at a standard altitude of 6096m. The airfoil is at an angle of attack of 5^0 . [14M]

(At 6096m, $\rho_{\infty}=0.654\,kg/m^3$, T=248.6K)

- i. Calculate the lift and wave drag coefficients and the lift and wave drag per unit span
- ii. Compare these results with the same airfoils at the same conditions, except at Mach 2.

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a) Explain the criteria for longitudinal static stability of an aircraft?	[10M]
	(b) Determine the performance parameters of aircraft in accelerated aircraft?	[4M]

8. Explain the mechanism of a typical Ramjet engine with a neat sketch and draw the pressure – specific volume diagram for an ideal ramjet. [14M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a) Explain about fatigue life analysis implemented to aircraft structural design?	[8M]
	(b) Explain about various size effects in conventional aircraft design?	[6M]
10.	(a) Explain the working of various types of rocket propellants?	[8M]
	(b) Differentiate between a single stage rocket and a multi stage rocket?	$[\mathbf{6M}]$