Hall Ticket	No Question Paper Code: BCC002
	INSTITUTE OF AERONAUTICAL ENGINEERING
E IARE S	(Autonomous)
TION FOR LIBER	M.Tech I Semester End Examinations (Regular) - February, 2017
	Regulation: IARE–R16
NUME	RICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS (CAD/CAM)
Time: 3 Hou	Irs Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a) Solve the heat conduction equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the initial and boundary of $u(x,0) = \sin \pi x, 0 \le x \le 1$ and $u(0,t) = u(1,t) = 0$ using Crank-Nicolson method for $u(x,0) = \sin \pi x, 0 \le x \le 1$ and $u(0,t) = u(1,t) = 0$ using Crank-Nicolson method for $u(x,0) = u(x,0) \le x \le 1$.	onditions for $h = \frac{1}{3}$
	and $k = \frac{1}{36}$ Integrate upto two time levels.	[7M]
	(b) Explain Stability and Convergence analysis of difference schemes	[7M]
2.	(a) Discuss the classification of second order partial differential equations .	[7M]
	(b) Show that the Crank-Nicolson method is unconditionally stable.	[7M]

$\mathbf{UNIT} - \mathbf{II}$

3.	(a) Explain five point formula for finite difference	[7M]
	(b) Discuss the stability of heat equation using Von Neumann method.	[7M]
4.	xplain conditions for one dimensional diffusion equation in cylindrical and spherical coordinates	
		[7M]
	(b) Explain Alternating Direction Implicit (ADI) methods.	[7M]

(b) Explain Alternating Direction Implicit (ADI) methods.

$\mathbf{UNIT} - \mathbf{III}$

- (a) Find the solution of the initial-boundary value $u_{tt} = u_{xx}$ $0 \le x \le 1$ subject to the initial and 5.boundary conditions $u(x,0) = \sin \pi x, 0 \le x \le 1$ and u(0,t) = u(1,t) = 0, t > 0 using explicit scheme for $h = \frac{1}{4}$ and $r = \frac{3}{4}$. Integrate upto two time levels. [7M]
 - (b) Prove that the Wenderoff's scheme is unconditionally stable. [7M]
- 6. (a) Find the solution of the differential equation $\frac{\partial u}{\partial t} + \frac{\partial}{\partial t} \left(\frac{u^2}{2}\right) = 0$ subject to conditions u(0,t) = 0 $0, u(x, 0) = x, 0 \le x \le 1$ Using the Lax-Wenderoff's formula h=0.2, r=0.5 and integrate for one time step. [7M]
 - (b) Derive Wenderoff's formula.

[7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Solve the mixed boundary value problem $\nabla^2 u = 0, \ 0 \le x, y \le 1, \ u=2x, u=2x-1, y=0, y=1$ $0, 0 \le x \le 1, \ u_x + u = 2 - y, u = 2 - y, x = 0, x = 1, 0 \le y \le 1$, using five point formula with h=k=1/3. [7M]
 - (b) Solve the boundary value problem $u_{xx} + u_{yy} 5u(u_x u_y) = -5e^{2x}cosy(cosy + siny), 0 \le x, y \le 1$ using second order method with $h = \frac{1}{2}$ [7M]
- 8. (a) Solve the boundary value problem $u_{rr} + \frac{1}{r}u_r + u_{zz} = -1, 0 \le r \le 1, -1 \le z \le 1$ u=0, on the boundary. Using five point formula with h=k=1/2.
 - (b) Explain Weighted Residual Methods

$\mathbf{UNIT}-\mathbf{V}$

9. (a) Discuss Variation methods, least square method and Galerkin method . [7M]
(b) Obtain a one parameter approximate solution of the boundary value problem [7M]
∇²u = 0, |x| ≤ 1, |y| ≤ 1 u=0 ,on the boundary using Galerkin method. [7M]
10. (a) Discuss Finite element method. [7M]
(b) Find a one parameter Galerkin solution of the boundary value problem [7M]
∇²u = 0, |x| ≤ 1, |y| ≤ 1/2

u=0, On the boundary.

[7M]

[7M]