	An annual ONE Operation from a sh Unit	
Time: 3 Hour	s (CAD/CAM)	Max Marks: 70
	Design for Manufacturing MEMS and Micro Systems	
	$ { \bf Regulation: \ IARE-R16 } $	
ON FOR LIBE	M.Tech II Semester End Examinations(Regular) - July, 2018	
Fuer IARE NO	(Autonomous)	
	INSTITUTE OF AERONAUTICAL ENGINEERIN	IG
Hall Ticket	No Question Pap	ber Code: BCC210

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a) Provide an account of evolution of micro fabrication and miniturization of MEMS.	[7M]
	(b) List out the applications of MEMS in automobile industries.	[7M]
2.	(a) Discuss the working principle of micro accelerometers.	[7M]
	(b) Why are electrostatic forces used to run micro motors rather than conventional electron forces? Explain why this actuation technique is not used in macrodevices and machines	magnetic s.
		[7M]

$\mathbf{UNIT}-\mathbf{II}$

3. (a) Explain the role of electrochemistry in micro fabrication highlighting advantages and disadvantages.
 (b) Discuss why atomic structure of matter is considered as a decisive factor in micro systems design.
 [7M]

- 4. (a) Explain the plasma physics in detail and discuss how plasma generator works with a neat sketch.
 [7M]
 - (b) The resistivity of the doped silicon at the depth of 6 μm is $10^{-2} \Omega cm$. Calculate the time required to dope born into the silicon substrate. [7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Explain the static bending theory applied to microsystems and deduce the equations. [7M]
 - (b) Provide a detailed notes on the application of finite element stores analysis in microsystems design.

[7M]

- 6. (a) Summarize the applications of FEM in the field of MEMS. [7M]
 - (b) The vibration of the mass is initiated by a small "pull" downwards by an amount $\delta_{st} = 10 \ \mu m$. The balanced mass spring system with spring constants K1=K2. Find the values of amplitude and frequency of 10-mg mass suspended from a spring with a spring constant k= 7 x 10^{-7} N/m.

[7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a)	Summarize the steps involved in design of a silicon die for pressure design for microsystem of with a neat sketch.	$\frac{\mathrm{design}}{[7\mathbf{M}]}$
	(b)	Explain the phenomenon of incompressible fluid flow in micro conducts.	[7M]
8.	(a)	Discuss the heat conduction process in multilayered thin films	[7M]
	(b)	List out and discuss the design considerations of micro pressure sensor.	[7M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a)	With the help of a suitable sketch discuss the process of ion implantation.	[7M]
	(b)	Differentiate ranging from bulk micro manufacturing and surface micromachining.	[7M]
10.	(a)	What are the different materials used in MEMS fabrication process and explain each or their properties and applications.	ne with [7M]
	(b)	Write short notes on LIGA process and silicon piezoresistors.	[7M]