

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

MECHANICALENGINEERING

COURSE DESCRIPTOR

Course Title	ADVANC	ADVANCED FINITE ELEMENT ANALYSIS						
Course Code	BCCB11	BCCB11						
Programme	M. Tech	M. Tech						
Semester	Π	П						
Course Type	Core	Core						
Regulation	IARE - R18	IARE - R18						
		Theory		Practic	cal			
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits			
	3	-	3	3	2			
Chief Coordinator	Dr. P Sriniva	Dr. P Srinivasa Rao, Professor						
Course Faculty	Dr. P Sriniva	Dr. P Srinivasa Rao, Professor						

I. COURSE OVERVIEW:

The course is aimed at students from all engineering majors. Advanced Finite Element Analysis covers the fundamental practices common to all engineering majors in making and reporting basic finite element Analysis and their use in designing high precision items. Advanced Finite Element Analysis covers the fundamental practices common to all engineering majors in making and reporting basic finite element Analysis and using these analysis for obtaining an approximate solution of ordinary and partial differential equations. Students will learn about the finite element Analysis process and commonly used finite element method as well as statistical analysis and standard uncertainty analysis methods. The learning process will be enhanced by completing assignments using mathematical software.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AME014	VI	FINITE ELEMENT MODELLING	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Advanced Finite Element Analysis	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	LCD / PPT	~	Seminars	~	Videos	~	MOOCs
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment	pattern for CIA
---------------------	-----------------

Component		Total Marks	
Type of Assessment	CIE Exam	Quiz / AAT	Total Warks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Apply advanced level knowledge, techniques, skills and modern tools in the field of computer aided engineering to critically assess the emerging technological issues.	3	Presentation on real-world problems
PO 2	Have abilities and capabilities in developing and applying computer software and hardware to mechanical design and manufacturing fields.	2	Seminar
PO 3	Conduct experimental and/or analytical study and analyzing results with modern mathematical / scientific methods and use of software tools.	2	Assignments
PO 4	Function on multidisciplinary environments by working cooperatively, creatively and responsibly as a member of a team.	2	Seminar
PO 5	Write and present a substantial technical report / document.	1	Seminar
PO 6	Independently carry out research / investigation and development work to solve practical problems	2	Assignments
PO 7	Design and validate technological solutions to defined problems and recognize the need to engage in lifelong learning through continuing education.	1	Assignments

3 = High; **2** = Medium; **1** = Low

VII. COURSE OBJECTIVES (COs):

The course should enable the students to:

The course s	hourd chapte the students to.
Ι	Comprehensive understanding of Finite element methods and its application to the engineering problems.
II	Apply the fundamental and advanced finite element methods to the complex structural problems
III	Design, identify and adopt the suitable FE Methods

VIII. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome		
CO1	Upon completion of this course, the students can	CLO 1	To perform complete FE formulations for engineering analysis		
	able to understand different mathematical Techniques used in FEM analysis	CLO 2	To write codes for a finite element model		
		CLO 3	To use commercial FEA software to solve engineering problems		
CO2		CLO 4	To perform complete FE formulations for engineering analysis		
		CLO 5	To write codes for a finite element model		

		CT OC	To use commercial FEA
		CLO6	software to solve engineering problems
CO2			1
CO3		CLO 7	11 5
		CLO /	methods in design engineering components or systems
			To apply finite element
	Understand use of FEA in Structural and thermal	CLO 8	methods in design engineering
	problem	CLU 8	components or systems
			To apply finite element
		CLO 9	methods in design engineering
		CLO 9	components or systems
CO4			To apply finite element
04	Understand the application of FEA in heat transfer problem	CLO 10	methods in design engineering
			components or systems
		CLO 11	To apply finite element
			methods in design engineering
			components or systems
		CLO 12	To apply finite element
			methods in design engineering
			components or systems
CO5			To apply the knowledge of
		GL 0.10	FEM for stress analysis, model
		CLO 13	analysis, heat transfer analysis
			and flow analysis
	Learn how to do analysis learn the various		To apply finite element
	concepts and types of analysis and finite element	CLO 14	methods in design engineering
	modeling techniques		components or systems
	inouening teeninques		To apply the knowledge of
		CLO 15	FEM for stress analysis, model
		CL0 15	analysis, heat transfer analysis
			and flow analysis
	3 - High: 2 - Medium: 1 - Low		

3 = High; **2** = Medium; **1** = Low

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
BCC201.01	CLO 1	To perform complete FE formulations for	PO 1	3
		engineering analysis		
BCC201.02	CLO 2	To write codes for a finite element model	PO 1	3
BCC201.03	CLO 3	To use commercial FEA software to solve engineering problems	PO 1,PO 2	3
BCC201.04	CLO 4	To perform complete FE formulations for engineering analysis	PO 1,PO 2	2
BCC201.05	CLO 5	To write codes for a finite element model	PO 2	2
BCC201.06	CLO 6	To use commercial FEA software to solve engineering problems	PO 1,PO 2,PO 3	2
BCC201.07	CLO 7	To apply finite element methods in design engineering components or systems	PO 2	1
BCC201.08	CLO 8	To apply finite element methods in design engineering components or systems	PO 2, PO 3	1
BCC201.09	CLO 9	To apply finite element methods in design engineering components or systems	PO 2	2
BCC201.10	CLO 10	To apply finite element methods in design engineering components or systems	PO 1,PO 2	2
BCC201.11	CLO 11	To apply finite element methods in design engineering components or systems	PO 1,PO 2,PO 3	3

BCC201.12	CLO 12	To apply finite element methods in design	PO 3, PO 6	3
		engineering components or systems		
BCC201.13	CLO 13	To apply the knowledge of FEM for stress	PO 2, PO 6	3
		analysis, model analysis, heat transfer analysis and		
		flow analysis		
BCC201.14	CLO 14	To apply finite element methods in design	PO 3,PO 2	3
		engineering components or systems		
BCC201.15	CLO 15	To apply the knowledge of FEM for stress	PO 3, PO 6	1
		analysis, model analysis, heat transfer analysis and		
		flow analysis		

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

			Prog	cam Outcome	s (POs)		
(COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2					
CO 2	3	2					
CO 3		3	2				
CO 4			2		2		
CO 5		1	3				

3 = **High**; **2** = **Medium**; **1** = **Low**

XI. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)							
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
CLO 1	3							
CLO 2	3							
CLO 3	3	3						
CLO 4	3	2						
CLO 5		2						
CLO 6	2	2	2					
CLO 7		1						
CLO 8		1	1					
CLO 9		2						
Course								

Learning Outcomes (CLOs)	PO1	PO2	РОЗ	PO4	PO5	PO6	PO7
CLO 10	2	2					
CLO 12			3			3	
CLO 13		3				3	
CLO 14		3	3				
CLO 15			1			1	

3 = High; **2** = Medium; **1** = Low

XII. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO1, PO3, PO5	SEE Exams	PO1, PO3, PO5	Seminar and Term Paper	PO1, PO2, PO3, PO5
Viva	-	Mini Project	-	Laboratory Practices	-

XIII. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
~	Assessment of Mini Projects by Experts		

XIV. SYLLABUS

r					
UNIT-I	FINITE ELEMENT METHODS – A REVIEW	Classes:09			
Governing differential equations of one – and two dimensional problems, Library of one dimensional and two dimensional elements; Gauss Quadrature and iso parametric elements- Stress calculation and Gauss points convergence requirements and patch test.					
UNIT-II	BENDING OF PLATES AND SHELLS	Classes: 09			
and thick pla	Bending of plates and shells- Finite element formulations of plates and shell elements – Thin and thick plates – Conforming and non conforming elements –C0 and C1 continuity elements –Shell elements as de generate 3D stress elements and Applications				
UNIT-III	THREE DIMENSIONAL SOLIDS	Classes: 09			
	Introduction- Tetrahedral elements hexahedron elements Linear and Higher order elements- Elements with curved surfaces.				
UNIT-IV	SPECIALPURPOSE ELEMENTS	Classes: 09			
	lements- Transition elements – Finite strip elements – Strip elem nfinite domains – node less elements	nent method –			
UNIT-V	NON LINEAR ANALYSIS	Classes: 09			
Introduction to non linear analysis Material Non linearity and non linearity –plasticity creep viscoplasticity Non Linear constitutive problem in solid mechanics- Various yield considerations – solution procedures and direct Iteration method Newton Rapson method and modified newton rapson method, application in any one manufacturing process					
Text Books:					
 Robert D. Cook David S. Malkus, Michel E. Plesha Robert J. Whitt Concepts and applications of Finite element analysis John Whiley & Sons, O.C. Zienkowitz, —The Finite Element Method in Engineering Science^{II}, McGraw-Hill, 					

1st Edition, 2013

Reference Books:

- 1. Bathe .K. J, -Finite Element procedures, Printicehall , 2006.
- 2. S. S. Rao, —The Finite Element Methods in Engineering, Elsevier, 4th Edition, 2013.
- 3. J. N. Reddy, —An Introduction to Finite Element Methods, McGraw-Hill, 1st Edition,
- 2013.

XV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topic Outcomes	Topics to be covered	Reference
1-2	To perform complete FE formulations for engineering analysis	Introduction of finite element methods	T1:3.1 R1:3.1
3-7	To write codes for a finite element model	Introduction of finite element methods, Governing differential equations of one – and two dimensional problems,	T1:3.2.5 R1:3.3.4
8-10	To use commercial FEA software to solve engineering problems	Library of one dimensional and two dimensional elements	T1:3.1.5 R1:3.1.3
11-14	To perform complete FE formulations for engineering analysis	Gauss Quadrature and iso parametric elements - Stress calculation a	T1:9.1 R1:5.1
15-16	To write codes for a finite element model	Stress calculation and Gauss points convergence requirements and patch test	T1:9.2.1 R1:5.2.3
17-20	To use commercial FEA software to solve engineering problems	Introduction of Bending of plates and shells- Finite element formulations of plates and shell elements	T1:9.4.2 R1:5.3
21-23	To apply finite element methods in design engineering components or systems	Thin and thick plates, Conforming and non conforming elements	R2:9.16 R2:27.5
24-26	To apply finite element methods in design engineering components or systems	Conforming and non conforming elements, C0 and C1 continuity elements	R2:9.16.12 R2:27.1
27-28	To apply finite element methods in design engineering components or systems	Shell elements as de generate 3D stress elements	R2:9.64 R2:30.2
29-30	To apply finite element methods in design engineering components or systems	Applications and problems on	R2:9.55 R1:29.3
31-32	To apply finite element methods in design engineering components or systems	Introduction to THREE DIMENSIONAL SOLIDS	T1:7.1.1 R1:4.6
33-34	To apply finite element methods in design engineering components or systems	Tetrahedral elements hexahedron elements	T1:7.1 R1:3.6.1
35-36	To apply the knowledge of FEM for stress analysis,	Linear and Higher order elements	T1:7.1.1 R1:4.6

Lecture No	Topic Outcomes	Topics to be covered	Reference
	model analysis, heat transfer analysis and flow analysis		
37	To apply finite element methods in design engineering components or systems	Elements with curved surfaces	T1:7.2 R1:4.2
38	To apply the knowledge of FEM for stress analysis, model analysis, heat transfer analysis and flow analysis	Introduction to SPECIALPURPOSE ELEMENTS	T1:8.3 R2:6.5
39	To apply finite element methods in design engineering components or systems	Type of elements, Crack tip elements	T1:8.7 R1:4.8.12
40-41	To apply finite element methods in design engineering components or systems	Transition elements and Finite strip elements	T1:8.4 R1:4.5
42	To apply finite element methods in design engineering components or systems	Introduction to type of methods, Strip element method	T1:8.9 R1:4.8.15
43-44	To apply finite element methods in design engineering components or systems	Method of infinite domains – node less elements	T1:8.6 R1:4.8.15
45-47	To apply finite element methods in design engineering components or systems	Introduction to non linear analysis , Material Non linearity	T1:8.1 R1:4.8.6
48-49	To apply finite element methods in design engineering components or systems	Non linearity plasticity, creep viscoplasticity	T1:7.4 R1:4.4
50-52	To apply the knowledge of FEM for stress analysis, model analysis, heat transfer analysis and flow analysis	Non Linear constitutive problem in solid mechanics- Various yield considerations – solution procedures	T1:7.4.2 R1:4.4.1
53-55	To apply finite element methods in design engineering components or systems	direct Iteration method Newton Rapson method	T1:7.4.4 R1:4.4.2
56-57	To apply the knowledge of FEM for stress analysis, model analysis, heat transfer analysis and flow analysis	modified newton rapson method , application in any one manufacturing process.	T1:7.3 R1:4.3

XVI. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed Actions	Relevance with POs
1	To improve standards and analyze the concepts.	Seminars / Guest Lectures / NPTEL	PO 1, PO 2, PO 3
2	Encourage students to solve real time applications and prepare towards competitive examinations.	Seminars / Guest Lectures / NPTEL	PO 2, PO 5

Prepared by:

Dr. P Srinivasa Rao, Professor

HOD, MECHANICAL ENGINEERING