Hall Ticket No	Question Paper Code: BCS002				
INSTITUTE OF AERONAUTICAL ENGINEERING					
(Autonomous)					
M.Tech I Semester End Examinations (Regular) - January/February, 2018					
Regulation: IARE–R16					
DATA STRUCTURES AND PROBLEM	M SOLVING				
(Computer Science and Enginee	ering)				

Time: 3 Hours

Max Marks: 70

[7M]

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1. (a) Consider the code in Table 1 snippets. Derive the time complexity

Table 1

int count = 0; $N = 1000$	int count = 0; $N = 1000$
for (int $i = 0; i < N; i++$)	for (int $i = N; i > 0; i$)
for (int $j = 0; j < i; j++)$	for (int $j = 0; j < i; j++)$
$\operatorname{count}++;$	$\operatorname{count}++;$

(b) Explain briefly stack data structure along with algorithms for push and pop operation. [7M]

- 2. (a) Explain briefly array based internal representation of heap with a suitable example. [7M]
 - (b) What is the space complexity of the following code? Justify your answer int sum(int A[], int n) { int sum = 0, i; for(i = 0; i < n; i++) sum = sum + A[i]; return sum; }

[7M]

$\mathbf{UNIT} - \mathbf{II}$

- 3. (a) Write algorithms for dictionary search and insertion using skip list. [7M]
 - (b) Demonstrate the insertion of the keys 5, 28, 19, 15, 20, 33, 12, 17, and 10 into a hash table with collisions resolved by chaining. Let the table have 9 slots, and let the hash function be $h(k) = k \mod 9$.

[7M]

- 4. (a) Describe linear probing and quadratic probing with suitable example. [7M]
 - (b) Given the values 2341, 4234, 2839, 430, 22, 397, 3920, a hash table of size 7, and hash function $h(x) = x \mod 7$, show the resulting tables after inserting the values in the given order with each of these collision strategies: separate chaining, linear probing, quadratic probing and double hashing [7M]

$\mathbf{UNIT}-\mathbf{III}$

- 5. (a) Explain Depth First Search (DFS) Method.
 - (b) Assume that you have been given the following binary tree shown in Figure 1. Write Java function to perform InOrder traversal of this tree using iterative and recursive approach. [7M]

Figure 1

- 6. (a) Discuss Dijkstra's algorithm w.r.t data structure with a suitable example. [7M]
 - (b) Use Kruskal's algorithm to find a minimum spanning tree of the given graph in Figure 2. Draw the resulting spanning tree and list the edges in the order they are picked by Kruskal's algorithm.

Figure 2

[7M]

[7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a)	Outline the steps for searching an element in AVL tree.	[7M]
	(b)	Write two methods in Java to find the successor and predecessor of a given node. A a class Tree Node that represents nodes in the BST already exists.	Assume that [7M]
8.	(a)	Show result of inserting 2, 1, 4, 5, 9, 3, 6, 7 into an empty AVL tree.	[7M]
	(b)	Design a class to find the K^{th} largest element in a Binary Search Tree.	[7M]
		$\mathbf{UNIT} - \mathbf{V}$	
9.	(a)	What is B-Tree? List any four properties of B-Tree.	[7M]
	(b)	What is KNUTH-MORRIS-PRATT Algorithm? Outline the (KMP) Algorithm	[7M]
10.	(a)	Show the red-black trees that result after successively inserting the keys 41, 38, 31, 8 into an initially empty red-black tree.	, 12, 19, and $[7M]$
	(b)	How text compression can be done using Huffman coding? Describe clearly.	[7M]

 $-\circ\circ\bigcirc\circ\circ-$