Hall Ticket N	No la	Question Paper Code: BCS003
		GINEERING
PATION FOR LIBERT	M.Tech I Semester End Examinations (Regular) - F	ebruary, 2017
	Regulation: IARE–R16	

HIGH PERFORMANCE ARCHITECTURE

(Computer Science and Engineering)

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

- 1. (a) Illustrate the primary compiler problem for vector pipelined machines. [8M]
 - (b) What is Bernstein's condition? Given an example of loop that violates the third Bernstein Condition. [6M]
- 2. (a) Dependences represent two kinds of constraints on program transformations- What are they? Give an example for each. [6M]
 - (b) Movement of statements must be prohibited from their original iteration vectors to avoid transformations – Justify with a suitable example. [8M]

$\mathbf{UNIT}-\mathbf{II}$

3. (a) Test for dependences on S. Write down the subscripts. Which positions are separable, which are coupled? Which dependence test would you apply to each position? [7M]

i. for (k=0; k<100; k++) {
for (j=0; j<100; j++) {
for (i=0; i<100; i++) {
S
$$A[i+1,j+1,k+1] = A[i,j,1] + c;$$

}
}
ii. for (k=0; k<100; k++) {
for (j=0; j<100; j++) {
for (i=0; i<100; i++) {
A[i+1,j+k+1,i] = A[i,j,2] + c;
}
}

(b) Outline the Subscript Partitioning Algorithm

[7M]

4.	(a) Construct valid breaking conditions for the following	[8M]
	for $(k=0; k<100; k++)$ {	
	for $(j=0; j<100; j++)$ {	
	for $(i=0; i<100; i++)$ {	
	S $A[i+1,j+1,k+1] = A[i,jx,1] + c;$	
	}	
	}	
	}	
	(b) Explain briefly delta test for coupled groups with a suitable example.	[6M]

(b) Explain briefly delta test for coupled groups with a suitable example.

$\mathbf{UNIT}-\mathbf{III}$

5.	(a) Disc(b) Con	[10M] [4M]	
	S1	T = I, 100 $T = A(I) + B(I)$	
	S2	C(I) = T + T	
	S3	T = D(I) - B(I)	
	S4	A(I+1) = T * T	
		ENDDO	
	What	at will be the effect of renaming the scalar T	
6.	6. (a) What is loop alignment? Explain with a suitable example.		[7M]
	(b) Consider the following loop-nest for $i = 1.100$ {		
	101	for $i = 1.100 \{$	
	$\mathbf{S1}$	A(i,j) = B(i,j) + C(i,j);	
	S2	D(i,j) = A(i-1,j-1)*2.0;	
		}	
		}	
	Can	loop interchange be used here to parallelize or vectorize the loop.	

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a) In general, backward branches are complicated – Justify	[7M]
	(b) Outline the procedure for Strip Mine and Interchange.	[7M]
8.	(a) Exit branches are more complicated to eliminate than are forward branches – Comment.	[6M]
	(b) Illustrate how Simple Pleaking algorithm performs on the inner loop of matrix multipli	action

(b) Illustrate how Simple Blocking algorithm performs on the inner loop of matrix multiplication after loop interchange: [8M]DO J = 1, N

```
DO K = 1, N
     DO I = 1, N
        C(I,J) = C(I,J) + A(I,K) * B(K,J)
      ENDDO
    ENDDO
ENDDO
```

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Explain how different types of dependences can affect memory hierarchy management. [8M]
 - (b) Consider the following code [6M] DO I = 1, N DO J = 1, N C(J,I) = 0.0DO K = 1, N C(J,I) = C(J,I) + A(J,K) * B(K,I)ENDDO ENDDO

What is the effect of using unroll-and-jam with a factor of 2 to each of the outer loops?

- 10. (a) Bring out the three-phase for pruning edges. [9M]
 - (b) What is the impact of loop order on register reuse? [5M]