Hall Ticket	No												Question Paper Code: BCS004
	INS	STI	TU	JTE	EO	F	٩EI	RO	NA	٩Ū.	TIC	CA	AL ENGINEERING
TARE NO							((Au	ton	om	ous)	
ON FOR LIBET	МГ	Fach	TT 9	Some	octor	End	$1 \mathrm{Ev}$	amii	natio	ne (Sun	nla	ementary) - January 2018

M.Tech II Semester End Examinations (Supplementary) - January, 2018 Regulation: IARE–R16

DISTRIBUTED OPERATED SYSTEM

(Computer Science and Engineering)

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a) Explain the Flynns taxonomy of parallel and distributed computer systems.	[7M]
	(b) Explain five different classes of failures that can occur in RPC systems.	[7M]
2.	(a) Explain different kinds of transparency in a distributed system.	[7M]
	(b) Differentiate between closed group communication with open group communication p	rotocols.
		[7M]

$\mathbf{UNIT}-\mathbf{II}$

3.	(a)	Illustrate with an example how Lamport's algorithm synchronises the logical clocks in distributed systems.	[7M]					
	(b)	Explain the concept of wait-die and wound-wait deadlock prevention algorithms to prevent distributed deadlock.	t [7M]					
4.	. /	Illustrate different phases of bully algorithm in electing a leader by taking an example. Explain different steps in Chandy-Misra-Haas distributed deadlock detection algorithm.	[7M] [7M]					
	$\mathbf{UNIT} - \mathbf{III}$							
5.	` '	Briefly explain different ways to implement a threads package. What is naming transparency? Explain different ways of dealing with the shared files distributed system.	[7M] in a [7M]					
6.	. ,	Briefly discuss the advantages and disadvantages of usage of private disks in a workstation. Explain various ways of doing caching in client memory.	[7M] [7M]					

$\mathbf{UNIT}-\mathbf{IV}$

7. (a) Explain different states of a cache block in caching. [7M]
(b) Briefly discuss different classes of variables defined by Munin during software implementation of release consistency. [7M]

8.	(a)	Discuss different consistency models using synchronization operations and consistency	models
		not using synchronization operations.	[7M]
	(b)	Explain different ownership location protocols using a central manager.	[7M]
		$\mathbf{UNIT}-\mathbf{V}$	

- 9. (a) Discuss the five principle abstractions managed by the Mach microkernel. [7M]
 - (b) Illustrate the working principle of copy-on-write in Mach microkernel-based operating system.

[7M]

- 10. (a) Explain different process management primitives provided by Mach microkernel-based operating system. [7M]
 - (b) List and Illustrate different principal message types that the kernel sends to memory managers.

[7M]

$-\circ\circ\bigcirc\circ\circ-$