Hall Ticket No										
----------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: BCS208

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

M.Tech II Semester End Examinations (Supplementary) - January, 2019

Regulation: IARE-R16 SOFT COMPUTING

Time: 3 Hours (CSE) Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks

All parts of the question must be answered in one place only

	$\mathbf{UNIT} - \mathbf{I}$							
1.	(a) What are the differences between soft computing and hard computing?	[7M]						
	(b) What is neural network? Write the advantages of neural networks.	[7M]						
2.	(a) Explain different models of artificial neural networks with neat sketch.	[7M]						
	(b) What is the linear separability? Explain in detail with example.	[7M]						
$\mathbf{UNIT}-\mathbf{II}$								
3.	(a) Explain the training process of auto associative memory with neat sketch.	[7M]						
	(b) What is hopfield network. Write the testing algorithm for discrete hopfield network.	[7M]						
4.	(a) Explain the architecture of linear vector quantization with neat sketch.	[7M]						
	(b) What is the weight updation learning rule on winning? Explain.	[7M]						
	$\mathbf{UNIT}-\mathbf{III}$							
5.	(a) What is fuzzy membership? Explain the methods of membership value assignment.	[7M]						
	(b) Given two fuzzy sets A= $\{1/2 + 0.3/4 + 0.5/6 + 0.2/8 \}$, B= $\{0.5/2 + 0.4/4 + 0.1/6 + 0.1/6 + 0.1/6 \}$ perform union , intersection, difference and compliment over the sets A and B.	+1/8 } [7M]						
6.	(a) Explain Max-Min composition and Max Product composition with an example.	[7M]						
	(b) Explain lambda (λ) cut for fuzzy relation in detail with an example.	[7M]						
$\mathbf{UNIT} - \mathbf{IV}$								
7.	(a) What is categorical reasoning? Explain its formulations in detail.	[7M]						
	(b) What are the steps to compute output in Mamdani FIS.	[7M]						
8.	(a) Explain in detail about multi objective decision making.	[7M]						

(b) With a neat diagram explain fuzzy closed loop control system.

[7M]

$\mathbf{UNIT} - \mathbf{V}$

9. (a) Compare natural evolution and genetic algorithm terminology.
(b) What is fitness? Explain fitness function with an example.
[7M]
10. (a) Explain with example single point cross over and two point cross over.
[7M]
(b) List and explain the applications of genetic algorithms.
[7M]

