Hall Ticket	No Question P	aper Code: BCS208
	INSTITUTE OF AERONAUTICAL ENGINEERI (Autonomous)	NG
CTION FOR LIBERT	M.Tech II Semester End Examinations (Regular) - July, 2018 Regulation: IARE–R16 SOFT COMPLITING	
Time: 3 Hou	rs (CSE)	Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

- (a) Explain the architecture of McCulloch-Pitts Neuron model. [7M]
 (b) Explain the architecture of back propagation network, depicting the direction of information flow
 - for the feed-forward phase. [7M]
- 2. (a) Briefly discuss basic types of neuron connection architectures in artificial neural networks. [7M]
 - (b) Explain different phases in error back propagation learning algorithm. [7M]

$\mathbf{UNIT}-\mathbf{II}$

3.	(a)	What are the activation functions used in discrete bidirectional associative memory two layer network. [7M]
	(b)	Explain the general structure of full counter propagation network and discuss different compo- nents of instar-outstar model. [7M]
4.	(a)	Write the algorithm for hetero-associative network with either noisy input or with known input. $[7M]$
	(b)	What is learning vector quantization? Briefly discuss different variants of learning vector quantization. [7M]

$\mathbf{UNIT}-\mathbf{III}$

5.	(a)	Briefly discuss the properties that define classical sets and show their similarity to fuzzy se	ets.
			[7M]
	(b)	List and describe the properties of Lambda-cuts for fuzzy sets.	[7M]
6.	(a)	List and briefly discuss several ways to assign membership values to fuzzy variables in compa	arison
		with the probability density functions to random variables.	[7M]
	(b)	Write the properties of fuzzy equivalence relation. Explain each.	[7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a) List a	nd briefly discuss the properties that the two fuzzy vectors f and g, both of leng	th n. [7M]
	(b) Expla block	in the construction and working principle of fuzzy inference systems (FIS) with diagram of FIS.	the help of [7M]
8.	(a) Give	the comparison among mamdani and surgeon fuzzy interface systems.	[7M]
	(b) What	is fuzzy syllogism? Briefly describe different fuzzy syllogism.	[7M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a) Discuss the advantages and limitations of genetic algorithms.	
	(b) Briefly discuss different stopping conditions for genetic algorithm flow.	[7M]
10.	(a) What is crossover in genetic algorithm? List and briefly discuss different cross	over techniques.
		[7M]
	(b) Explain the process of converting the binary data into hevedocimal Permutat	ion oncoding and

(b) Explain the process of converting the binary data into hexadecimal, Permutation encoding and octal encoding. [7M]

 $-\circ\circ\bigcirc\circ\circ-$