Hall Ticket No		Question Paper Code: BCSB12
INST	ITUTE OF AERONAUTICAL ENG	GINEERING
TARE	(Autonomous)	
NON FOR LIBER N	A.Tech II Semester End Examinations (Regular) -	May, 2019
	Regulation: IARE–R18	
	SOFT COMPUTING	
Time: 3 Hours	(CSE)	Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a)	Distinguish between supervised learning and unsupervised learning?	[7M]
	(b)	Using McCulloh-Pitts neuron model, design a neural network for 2-input OR functions.	[7M]
2.	(a)	Explain the working of back propagation neural network with neat architecture and flower	hart.

(b) Write a R script to connect with Excel, read the contents of sheet and load into R object. [7M]

$\mathbf{UNIT}-\mathbf{II}$

3.	(a)	Write R program to extract sample XML data from web and steps to convert as data frame.
		Specify the needed packages and functions. [7M]
	(b)	Draw and explain the architecture of hetero associative memory network. [7M]
4.	(a)	Draw a diagram illustrating the architecture of Elman's simple recurrent network that performs a temporal version of the XOR task. [7M]
	(b)	Draw the architecture of Hopfield net. Design Hopfield net for 4 bit bipolar pattern. The training pattern are I sample S1[1,1,-1,-1], II sample S2[-1,1,-1,1], III sample S3[-1,-1,-1,-1]. [7M]
		$\mathbf{UNIT}-\mathbf{III}$

5.	(a)	How is fuzzy	$\operatorname{relation}$	converted	into a cr	isp relation	using	lamda-cut	process?	['	7M	[]
----	-----	--------------	---------------------------	-----------	-----------	--------------	-------	-----------	----------	----	----	----

- (b) Define fuzzy set theory. Explain with example non-iterative fuzzy sets. [7M]
- 6. (a) Discuss fuzzy number with respect to membership function. Explain the methods of membership value assignments. [7M]
 - (b) Write down the energy function of a BSB network with weight matrix W, feedback constant β , and activation vector x. [7M]

[7M]

$\mathbf{UNIT} - \mathbf{IV}$

7. (a) What is fuzzy compliment? What are the axioms to be satisfied so that a function can be used as fuzzy compliment? Check whether the function x+y-x.y can be used as a fuzzy union or not.

(b) What is the reason that logic function has rapidly become one of the most successful technology for developing sophisticated control systems? [7M]

- 8. (a) What is decomposition and aggregation of fuzzy rules? Illustrate with an example. [7M]
 - (b) Can a fuzzy membership be true and false at the same time? Justify. [7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Explain the basic concepts of genetic algorithm and steps involved in its algorithm. [7M]
 - (b) How to partition the window to get more number of plots. Discuss on single and multi object plots in R. [7M]
- 10. (a) Assume any typical control problem and explain the various steps involved in finding a solution using Genetic Algorithm. [7M]
 - (b) Give an example of combinatorial problem. What is the most difficult step in solving these problems? [7M]

 $-\circ\circ\bigcirc\circ\circ-$

[7M]