

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

CIVIL ENGINEERING

COURSE DESCRIPTOR

Course Title	BASIC ELECTRONICS ENGINEERING					
Course Code	AECB0	AECB01				
Programme	B.Tech	B.Tech				
Semester	III	CE				
Course Type	Foundation					
Regulation	IARE - R18					
	Theory Practical					al
Course Structure	Lectur	res	Tutorials	Credits	Laboratory	Credits
	3		0	3	-	-
Chief Coordinator	Mr. P. Sandeep Kumar, Assistant Professor, ECE					
Course Faculty	Mr. B. S	Santh	nosh Kumar, Ass	istant Professo	r, ECE	

I. COURSE OVERVIEW:

This course provides the preliminary knowledge on electronics for civil engineering students. The course gives insights into the construction, operation and of the diodes and transistors. It provides the understanding about the integrated circuits applications, focusing on generic applications through operational amplifiers, timers. The course also includes digital electronics.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHSB04	II	Waves and Optics	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Basic Electronics Engineering	70 Marks	30 Marks	100

×	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	>	Seminars	×	Mini Project	~	Videos
×	✗ Open Ended Experiments						

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Theory		Total Marks
Type of Assessment	CIE Exam	Quiz	AAT	
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exam.

Quiz-Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE(Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed
			By
PO 1	Engineering knowledge: Apply the knowledge of	3	Assignments
	mathematics, science, engineering fundamentals, and		
	an engineering specialization to the solution of		
	complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	1	Seminar
	literature, and analyze complex engineering problems		
	reaching substantiated conclusion using first principles of		
	mathematics, natural sciences, and engineering sciences.		
PO 4	Conduct investigations of complex problems: Use	1	Guest lectures
	research-based knowledge and research methods		
	including design of experiments, analysis and		
	interpretation of data, and synthesis of the information to		
	provide valid conclusions.		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed
			by
PSO 1	Professional Skills: Graduates shall demonstrate sound	1	Seminar
	knowledge in analysis, design, laboratory investigations		
	and construction aspects of civil engineering infrastructure,		
	along with good foundation in mathematics, basic sciences		
	and technical communication.		
PSO 2	Broadness and Diversity: Graduates will have a broad	-	-
	understanding of economical, environmental, societal,		
	health and safety factors involved in infrastructural		
	development, and shall demonstrate ability to function		
	within multidisciplinary teams with competence in		

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
	modern tool usage.		
PSO 3	Self -learning and Service: Graduates will be motivated	-	-
	for continuous self-learning in engineering practice and/ or		
	pursue research in advanced areas of civil engineering in		
	order to offer engineering services to the society, ethically		
	and responsibly.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES:

The course	The course should enable the students to:				
Ι	Introduce components such as diodes, BJTs and FETs.				
II	Know the applications of components.				
III	Understand common forms of number representation in logic circuits				
IV	Be acquainted to principles and characteristics of op-amp and apply the techniques for the design of comparators, instrumentation amplifier, integrator, and differentiator.				

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Describe the concept of	CLO 1	Understand the basic concept of PN junction diode.
	diode and its applications	CLO 2	Analyze the characteristics of diode for ideal and practical conditions.
		CLO 3	Understand the applications of diode in rectifiers with and without filters.
		CLO 4	Understand the concept of breakdown mechanism in diodes with applications of Zener breakdown diodes.
CO 2	Describe the operation of various transistors, FETs and	CLO 5	Describe the classification family table of various transistors.
their biasing methods.	CLO 6	Describe the concept of Bipolar Junction transistor with various modes of operation.	
	CLO 7	Understand the concept of transistor biasing with voltage divider bias.	
	CLO 8	Understand the construction and working of Field Effect Transistor(FET).	
		CLO 9	Understand the concept of Metal Oxide Semiconductor FET.
		CLO 10	Illustrate the basic CMOS circuits.
CO 3	Understand the concept of operational amplifier with	CLO 11	Understand the basic concepts of operational amplifiers.
	analysis of applications.	CLO 12	Analyze the parameters of practical and ideal op- amps.
		CLO 13	Understand the concept of virtual ground in op-amps.
		CLO 14	Perform basic arithmetic operations on voltages using opamps.
		CLO 15	Examine the working of op-amp as differentiator, integrator, comparator and buffer.
CO 4	Analysis of 555 timer IC for	CLO 16	Understand the internal block diagram of 555 timer IC.

COs	Course Outcome	CLOs	Course Learning Outcome
	multivibrators and op-amp data converters.	CLO 17	Examine the working of 555 timer as astable and monostable multivibrator.
		CLO 18	Understand the principle of data conversions with terminology.
		CLO 19	Analyze the various analog to digital converters.
		CLO 20	Analyze the various resistor ladder digital to analog converters.
CO 5	Explore the digital number	CLO 21	Perform calculations in different number systems.
systems and various digital logic circuits.		CLO 22	Understand the basic concepts of Boolean algebra and combinational logic circuits.
		CLO 23	Understand the basic sequential logic circuits.
		CLO 24	Understand counters, shift registers.

X. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have	PO's	Strength of
		the ability to:	Mapped	Mapping
AECB01.01	CLO 1	Understand the basic concept of PN junction diode.	PO 1	3
AECB01.02	CLO 2	Analyze the characteristics of diode for ideal and practical conditions.	PO 2	1
AECB01.03	CLO 3	Understand the applications of diode in rectifiers with and without filters.	PO 1,PO 4	3
AECB01.04	CLO 4	Understand the concept of breakdown mechanism in diodes with applications of Zener breakdown diodes.	PO 1	3
AECB01.05	CLO 5	Describe the classification family table of various transistors.	PO 1	3
AECB01.06	CLO 6	Describe the concept of Bipolar Junction transistor with various modes of operation.	PO 2	1
AECB01.07	CLO 7	Understand the concept of transistor biasing with voltage divider bias.	PO 2	1
AECB01.08	CLO 8	Understand the construction and working of Field Effect Transistor(FET).	PO 1	3
AECB01.09	CLO 9	Understand the concept of Metal Oxide Semiconductor FET.	PO 1	3
AECB01.10	CLO 10	Illustrate the basic CMOS circuits.	PO 2	1
AECB01.11	CLO 11	Understand the basic concepts of operational amplifiers.	PO 1	3
AECB01.12	CLO 12	Analyze the parameters of practical and ideal op- amps.	PO 2	1
AECB01.13	CLO 13	Understand the concept of virtual ground in op- amps.	PO 1	3
AECB01.14	CLO 14	Perform basic arithmetic operations on voltages using opamps.	PO 1	3
AECB01.15	CLO 15	Examine the working of op-amp as differentiator, integrator, comparator and buffer.	PO 1	3
AECB01.16	CLO 16	Understand the internal block diagram of 555 timer IC.	PO 1	3

CLO Code	CLO's	At the end of the course, the student will have	PO's	Strength of
		the ability to:	Mapped	Mapping
AECB01.17	CLO 17	Examine the working of 555 timer as astable and monostable multivibrator.	PO 2	1
AECB01.18	CLO 18	Understand the principle of data conversions with terminology.	PO 2	1
AECB01.19	CLO 19	Analyze the A/D converters.	PO 2	1
AECB01.20	CLO 20	Analyze the resistor ladder D/A converters.	PO 2	1
AECB01.21	CLO 21	Perform calculations in different number systems.	PO 1, PO 4	3
AECB01.22	CLO 22	Understand the basic concepts of Boolean algebra and combinational logic circuits.	PO 1, PO 2	3
AECB01.23	CLO 23	Understand the basic sequential logic circuits.	PO 1, PO 2	3
AECB01.24	CLO 24	Understand counters, shift registers.	PO 1, PO 2	3

3 = High; **2** = Medium; **1** = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course	Program Outcomes (POs)								
Outcome(COs)	PO 1	PO 2	PO 4	PSO1					
CO 1	3	1	1	1					
CO 2	2	1		1					
CO 3	3	1		1					
CO 4	2	1							
CO 5	3	1	1						

3 = High; **2** = Medium; **1** = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)									Program Specific Outcomes (PSOs)					
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3												1		
CLO 2		1													
CLO 3	3	1		1									1		
CLO 4	3														
CLO 5	3	1											1		
CLO 6		1													
CLO 7		1													

Course	Program Outcomes (POs)										Program Specific				
Learning											Outcomes (PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
(CLOs)															
CLO 8	3												1		
CLO 9	3														
CLO 10		1													
CLO 11	3												1		
CLO 12		1											1		
CLO 13	3														
CLO 14	3														
CLO 15	3														
CLO 16	3														
CLO 17		1													
CLO 18		1											1		
CLO 19		1											1		
CLO 20		1											1		
CLO 21	3			1									1		
CLO 22	3	1											1		
CLO 23	3	1													
CLO 24	3	1													

3 = High; **2** = Medium; **1** = Low

XIII. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO1, PO2, PO4,PSO1	SEE Exams	PO1, PO2, PO4,PSO1	Assignments	-	Seminars	PO1, PO2, PO4,PSO1
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Guest Lectures	PO4						

XIV. ASSESSMENT METHODOLOGIES – INDIRECT:

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS:

_

MODULE – I	DIODE AND APPLICATIONS	Classes: 08								
Semiconductor Diode - Ideal versus Practical, Resistance Levels, Diode Equivalent Circuits, Load Line Analysis; Diode as a Switch, Diode as a Rectifier, Half Wave and Full Wave Rectifiers with and without Filters; Breakdown Mechanisms, Zener Diode – Operation and Applications.										
MODULE - II	BIPOLAR JUNCTION TRANSISTOR (BJT)	Classes: 10								
Bipolar Junction T Common Emitter Configuration; Field and Enhancement ty	 Transistor (BJT) – Construction, Operation, Amplifying Action, Co and Common Collector Configurations, Operating Point, Voltage d Effect Transistor (FET) – Construction, Characteristics of Junction Fl /pe Metal Oxide Semiconductor (MOS) FETs, Introduction to CMOS. 	ommon Base, Divider Bias ET, Depletion								
MODULE - III	OPERATIONAL AMPLIFIERS AND APPLICATIONS	Classes: 08								
Introduction to Op Diagram,Pin Config Ground; Op-Amp Voltage Follower, O	Introduction to Op-Amp, Differential Amplifier Configurations, CMRR, PSRR, Slew Rate; Block Diagram,Pin Configuration of 741 Op-Amp, Characteristics of Ideal OpAmp, Concept of Virtual Ground; Op-Amp Applications- Inverting, Non-Inverting, Summing and Difference Amplifiers, Voltage Follower, Comparator, Differentiator, Integrator.									
MODULE - IV	TIMERS AND DATA CONVERTERS	Classes: 10								
IC 555 Timer – Converters – Basic Conversion, Flash t Type DAC, Specific	IC 555 Timer – Block Diagram, Astable and Mono stable Multi vibrator Configurations; Data Converters – Basic Principle of Analogue–to-Digital (ADC) and Digital-to-Analogue (DAC) Conversion, Flash type, Counter-ramp type and Successive Approximation type ADCs, Resistor Ladder Type DAC, Specifications of ADC and DAC.									
MODULE - V	BASIC DIGITAL ELECTRONICS	Classes: 09								
Morgan's Theorem Configurations; Co Shift Registers – R Applications.	is, Logic Circuits, Flip-Flops – SR, JK, D type, Clocked and bunters –Asynchronous, Synchronous, Ripple, Non-Binary, BCD E ight-Shift, Left-Shift, Serial-In-Serial-Out and Serial-In-Parallel-Out Sl	Master-Slave Decade types; hift Registers;								
Text Books:										
1. R. L. Boylestad	& Louis Nashlesky, "Electronic Devices & Circuit Theory", Pearson Ec	lucation, 2007.								
2. Santiram Kal, "	Basic Electronics- Devices, Circuits and II Fundamentals", Prentice Ha	III, India, 2002.								
1 David A Bell	"Electronic Devices and Circuits" Oxford University Press 2008									
2. Thomas L. Flog	yd and R. P. Jain, "Digital Fundamentals", Pearson Education, 2009.									
 R. S. Sedha , "A R. T. Paynter, Pearson Educat 	 R. S. Sedha, "A Text Book of Electronic Devices and Circuits", S. Chand & Co., 2010. R. T. Paynter, "Introductory Electronic Devices & Circuits – Conventional Flow Version", Pearson Education, 2009. 									
Web References:										
 mcsbzu.blogspot.com https://archive.org/details/ElectronicDevicesCircuits https://www.smartzworld.com https://www.crectirupati.com 										
E-Text Books:										
 https://books.g http://services.d http://nptel.ac.i https://books.g https://books.g 	oogle.co.in/books/about/Switching_Theory_and_Logic_Design eng.uts.edu.au/pmcl/ec/Downloads/LectureNotes.pdf n/courses/122106025/ oogle.co.in/books?isbn=8122414702 oogle.co.in/books?isbn=013186389									

_

XVI. COURSE PLAN:

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Understand the basic concept of PN junction diode.	CLO 1	T1:1.6
2-5	Analyze the characteristics of diode for ideal and practical conditions.	CLO 2	T1:1.7-1.9
6-9	Understand the applications of diode in rectifiers with and without filters.	CLO 3	T1:1.11, 2.6-2.7
10-11	Understand the concept of breakdown mechanism in diodes with applications of Zener breakdown diodes.	CLO 4	T1:1.15, 2.10
12	Describe the classification family table of various transistors.	CLO 5	T1:3.1
13-16	Describe the concept of Bipolar Junction transistor with various modes of operation.	CLO 6	T1:3.2-3.8
17-20	Understand the concept of transistor biasing with various with voltage divider bias.	CLO 7	T1:4.1-4.5
21-22	Understand the construction and working of Field Effect Transistor(FET).	CLO 8	T1:6.1-6.3
22-24	Understand the concept of Metal Oxide Semiconductor FET.	CLO 9	T1:6.7-6.8
25	Illustrate the basic CMOS circuits.	CLO 10	T1:6.11
26-27	Understand the basic concepts of operational amplifiers.	CLO 11	T2:7.3.1
28-29	Analyze the parameters of practical and ideal op-amps.	CLO 12	T2:7.3.3
30	Understand the concept of virtual ground in op-amps.	CLO 13	T2:7.3.4
31-33	Perform basic arithmetic operations on voltages using opamps.	CLO 14	T2:7.4.3,7.4.4
34-35	Examine the working of op-amp as differentiator, integrator, comparator and buffer.	CLO 15	T2:7.4.5, 7.5.2-3
36-37	Understand the internal block diagram of 555 timer IC.	CLO 16	R1:16-7
38-39	Examine the working of 555 timer as astable and monostable multivibrator.	CLO 17	T2:9.5
40-41	Understand the principle of data conversions with terminology.	CLO 18	T2:10.2
42-46	Analyze the various analog to digital converters.	CLO 19	T2:10.3
47-49	Analyze the various resistor ladder digital to analog converters.	CLO 20	T2:10.5
50-53	Perform calculations in different number systems.	CLO 21	T2:8.2
54-55	Understand the basic concepts of Boolean algebra and combinational logic circuits.	CLO 22	T2:8.3-8.7
56-58	Understand the basic sequential logic circuits.	CLO 23	T2:9.2-9.3
59-60	Understand counters and registers.	CLO 24	T2:9.4

The course plan is meant as a guideline. Probably there may be changes.

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed Actions	Relevance With POs	Relevance With PSOs
1	Laboratory practice	Seminars / Online demonstrations	PO 1, PO 2	PSO 1