Hall Ticket No	Question Paper Code: BPE003
INSTITUTE OF AERONAUTICAL EN (Autonomous)	GINEERING
M.Tech I Semester End Examinations (Regular) - For Begulation: IABE-B16	ebruary, 2017
SPECIAL MACHINES AND CONTRO (Power Electronics and Electric Dri	OLLERS ves)

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- 1. (a) Describe the constructional features of axial and radial flux synchronous reluctance motor with their operating characteristics. [7M]
 - (b) Derive the voltage and torque equations of synchronous reluctance motor.

[7M]

- 2. (a) Differentiate between axial and radial air gap synchronous motors. Compare the performance of synchronous reluctance motor with switched reluctance motor [7M]
 - (b) Draw and discuss the torque speed characteristics of synchronous reluctance motor. Explain in detail the construction and operation of Vernier motor and draw its phasor diagram.
 [7M]

$\mathbf{UNIT} - \mathbf{II}$

- 3. (a) A 3-phase, 3 stack variable reluctance stepper motor has 20 poles on each rotor and stator stack. Compute the step angle of the stepper motor. Assume double layer winding. [7M]
 - (b) Discuss the static and dynamic characteristics of stepper motor with a neat diagram. [7M]
- 4. (a) Discuss the dual voltage driver circuit for 2- phase on drive of a 4 phase stepper motor and explain the nature of current build up in dual drive. [7M]
 - (b) Explain the constructional features and operation of a hybrid motor. Describe step position error and holding torque resulting from load torque T_L . Draw the torqueangle curve. [7M]

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Illustrate the various modes of operation of switched reluctance motor with relevant plots. [7M]
 - (b) With a neat block diagram explain the closed loop speed control of a switched reluctance motor. [7M]
- 6. (a) Enumerate the procedure for the prediction of torque and control mechanism with relevant voltage and flux waveforms for switched reluctance motor in single pulse mode. [7M]
 - (b) Discuss the various converter topologies for a 3-phase switched reluctance motor with merits and de-merits. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a) Draw and explain the operation of electronic commutators.	[7M]	
	(b) Derive the torque and emf equations of a permanent magnet brushless DC motor.	[7M]	
8.	(a) Explain the magnetic circuit analysis of brushless DC motor on open circuit.	[7M]	
	(b) Sketch the structure of controller for PMBLDC motor and explain the functions of various	ıs blocks.	
		[7M]	

$-\mathbf{V}$ UNIT

9.	(a)	Derive the expression for power input and torque of a permanent magnet synchronous motor. Explain how its torque – speed characteristics are obtained? [7M]
	(b)	Draw the equivalent circuit and vector diagram of a permanent magnet synchronous motor with relevant voltage equations and flux linkage components. [7M]
10.	(a)	Explain how a smooth torque is ensured in a permanent magnet synchronous motor. Draw the phasor diagram corresponding to leading power factor operation. [7M]
	(b)	Discuss the different current control schemes in permanent magnet synchronous motor and men- tion the effects of demagnetizing mmf. [7M]