Hall Ticket No	Question Paper Code: BPE701
INSTITUTE OF AERONAUTICA (Autonomous)	AL ENGINEERING
M.Tech I Semester End Examinations (Reg	gular) - February, 2017
Regulation: IARE-I	R16
RENEWABLE ENERGY S	SYSTEMS
(Common to ES (CAD/CA	AM) STE)

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

- 1. (a) Define solar radiation and electromagnetic spectrum. Explain how a solar cell works. [7M]
 - (b) Taking a solar power content of $1 W/cm^2$ at the space-station location, calculate the area of solar panels required at 20 efficiency of conversion for powers of 2000 MW, 2400 MW, 35000 MW and 70000 MW. [7M]
- 2. (a) Write about reflection and anti-reflection coating. [7M]
 - (b) The reflection coefficients of some semiconductors are: Te = 0.28, CdTe = 0.19. Calculate the indices of refraction for them. [7M]

$\mathbf{UNIT}-\mathbf{II}$

- 3. (a) Write elaborately on Magneto Hydro Dymanic (MHD) generator, explaining its parts. [7M]
 - (b) An MHD duct has the dimensions, w=0.59m, h=0.34m and l=1.69m (Volume = $0.339m^3$). The magnetic field strength is B=3.9T along h, and the gas velocity is u=550/s along l. At a performance coefficient of K=0.60, calculate: [7M]
 - i. Generated voltage and its gradient E_1 inside the duct;
 - ii. Load voltage and the gradient E caused by it inside the duct.
- 4. (a) Write in detail types of wind turbines highlighting their classification. [7M]
 - (b) The undisturbed wind speed at a location is $v_i=35$ mile/hr, the speed at turbine rotor is 65% of this value and the speed at exit is 32% of v_i . The rotor diameter is $10\text{m.}\rho = 1.297 kg/m^3$. Calculate: [7M]
 - i. v_i in m/s.
 - ii. Power available in undisturbed wind at the turbine rotor
 - iii. Power in the wind at outlet
 - iv. Power developed by turbine
 - v. the value of C_p .

$\mathbf{UNIT}-\mathbf{III}$

- 5. (a) What are the generating modes with respect to a tidal project? [7M]
 - (b) A tidal project has installed capacity of 3000MW in 64 units each of 34MW rated output. The head at rated output is 5.52m. The embankment is 4 miles long = 6.4km. Again assume 95% efficiency for both turbine and generator. The generation is 5 hours twice a day. Calculate [7M]
 - i. The quantity of water flowing through each turbine & total flow out of the tidal basin.
 - ii. The surface area of the reservoir behind the embankment and the wash.
 - iii. Energy produced in TW-h per year.
- 6. (a) Write short notes on following types of Open Thermal Energy Conversion Schemes: [7M]
 - i. Closed-Cycle System
 - ii. Open Cycle System
 - (b) A tidal power station has 34 generators each of 10 MW operating at a maximum head of 13.5 m. It generates for two 6-hour periods per day. Calculate the basin capacity in m^3 , and annual energy production. Again assume 93% efficiencies. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a)	Write about coal gasification with special reference to Lurgi's coal gasification.	[7M]
	(b)	What is meant by thermo-chemical gasification and list out gasification steps.	[7M]
8.	(a)	Discuss about Global Energy Position.	[7M]
	(b)	Write briefly about the pollution-free energy systems.	[7M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a) After listing the types of fuel cells write about:	[7M]
	i. Polymer Electrolyte Membrane Fuel Cells (PEMFC)	
	ii. Direct Methanol Fuel Cells (DMFC)	
	(b) Explain Hydrogen-Oxygen Fuel cells with the help of a neat and labeled diagram.	[7M]
10.	(a) Write about the various applications of fuel cells with respect to their power.	[7M]
	(b) Discuss Li-ion batteries as a feasible ones for large scale power application and briefly	y write about
	its disadvantages.	[7M]