Hall Ticket N	No						Question Paper Code: BST001					
TO TARE NO	NSTI	STITUTE OF AERONAUTICAL ENGINEERING (Autonomous)										
TION FOR LISER	М.Т	Tech I S		End Exa Regula		`	Regular) - February, 2018 2– R16					
		Theory of Elasticity and Plasticity (STRUCTURAL ENGINEERING)										
Time: 3 Hours	s						Max Marks: 70					

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

1. (a) The state of strain at a point within a material is given by:

$$\begin{bmatrix} 200 & 100 & 0 \\ 100 & 300 & 400 \\ 0 & 400 & 0 \end{bmatrix} 10^{-6}$$

For E = 200GPa, ascertain the components of stress tensor.

(b) For the following state of strain, determine the principle strains,

2. (a) The state of stress at a point is given by:
$$\sigma x = 120MPa$$
, $\sigma y = 140MPa$, $\sigma z = 120MPa$, $\tau xy = 45MPa$, $\tau yz = 65MPa$, $\tau zx = 25MPa$. Determine the three principal stresses and the directions associated with the three principal stresses. [7M]

 $\begin{bmatrix} 2 & 3 & 2 \\ 3 & -1 & 5 \\ 2 & 5 & -4 \end{bmatrix} 10^{-6}$

(b) The state of stress at a point is given by: $\sigma x = 120MPa$, $\sigma y = -55MPa$, $\sigma z = -85MPa$, $\tau xy = -55MPa$, $\tau yz = 33MPa$, $\tau xz = -75MPa$. Determine the three principal stresses and the maximum shearing stress. [7M]

$\mathbf{UNIT}-\mathbf{II}$

3. (a) Prove that the following are Airy's Stress functions and examine the stress distribution represented by them.

i.
$$\varphi = Ax^2 + By^2$$

ii. $\varphi = Bx^3$

(b) Show that the Airy's stress function $\phi = (xy^3 - \frac{3}{4}xyh^2)$ represents stress distribution in a cantilever beam loaded at the free end with load P. Find the value of A if $\tau xy = 0$ at $y = \pm \frac{h}{2}$ where b and h are width and depth respectively of the cantilever. [7M]

[7M]

[7M]

[7M]

- 4. (a) A steel gun barrel is subject to an internal pressure of 70MPa. The internal diameter of the barrel is 75mm and external diameter of 225mm. A steel band 25mm thick and internal diameter 0.075mm smaller than the external diameter of the gun barrel is shrunk on the gun barrel. Calculate
 - i. The shrinkage pressure on the gun barrel,
 - ii. Maximum stress in the steel band, and
 - iii. Minimum temperature to which the band must be heated to make the assembly.
 - For steel E=200GPa, γ =0.3 and coefficient of thermal expansion =10 × 10⁻⁶/°C. [7M]
 - (b) Steel turbine rotor of 750mm outer diameter, 150mm inner diameter and 50mm thickness, has 100 blades 150mm, each weighing 4N. it is shrink-fitted on a rigid shaft. Calculate the initial shrinkage allowance on the inner diameter of the rotor so that it just loosens on the shaft at 3000rev/min. Take E=200Gpa,v=0.3. The density of shaft and rotor is 7500kg/m³. [7M]

$\mathbf{UNIT} - \mathbf{III}$

5.	(a)	Prove that the determination of principal stresses and principal directions reduces to	solution of
	. ,	eigen value problem.	[7M]
	(b)	Explain Principle of superposition in three dimensional stress strain system.	[7M]
6.	(a)	A prismatic bar of $2a * 2b$ cross section is bent by two equal and opposite couples. the equations for the bent shape of prismatic bar	Determine [7M]
	(b)	Explain reciprocal theorem in three dimensional stress strain system	[7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Prove that the shear flow for a thin walled tube subjected to torsion is constant. [7M]
 - (b) A 30- cm I beam with flanges and web 1.25 cm thick, is subjected to a torque 4900 Nm as shown in Figure 1. Find the maximum shear stress and the angle of twist per unit length. [7M]

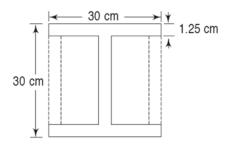


Figure 1

- 8. (a) Derive a general expression for torsion of thin tubes by membrane analogy. [7M]
 - (b) A steel girder has the cross-section as shown in Figure 2. The wall thickness is uniformly 1.25 cm. The stress due to twisting should not exceed 350000 kPa.Neglect stress concentrations. Determine the following [7M]
 - i. maximum allowable torque
 - ii. Twist per metre length under that torque

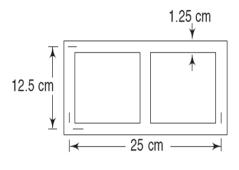


Figure 2

 $\mathbf{UNIT}-\mathbf{V}$

i. Tresca's yield criteria.	
ii. Von-mises yield criteria.	
(b) Explain the following theories of strength [7]	$\mathbf{M}]$
i. Maximum principal stress theory	
ii. Mohr's theory	
10. (a) Differentiate between elastic and plastic analysis? [7]	$\mathbf{M}]$

(b) A bolt of diameter 32mm subjected to axial force 20kN . Find the maximum shear in the bolt according to the least three different theories of failure? Assume yield stress 250MPa and factor of safety 1.5. [7M]