Time: 3 Hours	3	Max Marks: 70
	(Structural Engineering)	
	COMPUTER ORIENTED NUMERICAL MET	HODS
	Regulation: IARE–R16	
ON FOR LISE	M.Tech I Semester End Examinations (Regular) - Februar	ry, 2018
FUCH IARE	(Autonomous)	
	NSTITUTE OF AERONAUTICAL ENGINI	EERING
Hall Ticket N	Vo Que	stion Paper Code: BST003

$\mathbf{UNIT} - \mathbf{I}$

All parts of the question must be answered in one place only

1. (a) Solve the following system of equations using Gauss-Seidel method starting with $\mathbf{x}^{(0)} = (0.5, 0.5, 0.5, 0.5)^T$. [7M]

Γ	-8	1	1	x_1		1	
	1	-5	-1	x_2	=	16	
	1	1	-4	x_3		7	

(b) Use the Givens method to find the Eigen values of the matrix

ſ	2	-1	0	
	-1	2	-1	[7M]
	0	-1	2	

2. (a) Use the LU decomposition method to solve the following simultaneous linear equations. [7M]

25	5	1	$\begin{bmatrix} a_1 \end{bmatrix}$		106.8
64	8	1	a_2	=	177.2
144	12	1	$\begin{bmatrix} a_3 \end{bmatrix}$		279.2

(b) Solve the following system of equations by using Cramer's rule [7M] $x_1 + 2x_2 + x_3 = 2$ $3x_1 + 6x_2 + x_3 = 1$ $3x_1 + 3x_2 + 2x_3 = 3$

$\mathbf{UNIT}-\mathbf{II}$

3. (a) A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a $15'' \times 10''$ rectangular plate. The centers of the holes in the plate describe the path the arm needs to take, and the hole centers are located on a Cartesian coordinate system (with the origin at the bottom left corner of the plate) given by the specifications in Table 1. [7M]

Table 1

x(in.)	2.00	4.25	5.25	7.81	9.20	10.60
y(in.)	7.2	7.1	6.0	5.0	3.5	5.0

Find the path traversed through the six points using a fifth order Lagrange polynomial.

(b) Construct Newtons forward difference interpolating polynomial for the following data given in Table 2 hence evaluate f(4) [7M]

Table	2
-------	---

x	0	1	2	3
f(x)	1	2	1	10

4. (a) Given the following values of f(x) and f'(x) estimate the values of f(-0.5) using the Hermite interpolation [7M]

Table 3

x	f(x)	$f^{\prime}\left(x\right)$
-1	1	-5
1	3	7

(b) For linear interpretation, in the case of equispaced tabular data, shows that the error does not exceed 1/8 of the second difference. [7M]

$\mathbf{UNIT} - \mathbf{III}$

5. (a) A rod is rotating in a plane. The Table 4 below gives the angle θ (in radians) through which the rod has turned for various values of the time t (in seconds). [7M]

Table	4
-------	---

t	0	0.2	0.4	0.6	0.8	1.0	1.2
θ	0	0.12	0.49	1.12	2.02	3.20	4.67

Calculate the angular velocity when t=0.6.

Page	2	of	4
	_	<u> </u>	-

Table 5

х	1	2	4	8	10
f(x)	0	1	5	21	27

6. (a) By repeated application of Richardson extrapolation find f'(1) from the following Table 6 values. [7M]

Tal	bl	e	6
LO		LO	0

x	0.6	0.8	0.9	1.0	1.1	1.2	1.4
f(x)	0.707178	0.859892	0.925863	0.984007	1.033743	1.074575	1.127986

Use the formula $f'(x) = \frac{f(x+h) - f(x-h)}{2h}$ and h=0.4,0.2,0.1.

(b) Find f (32) by applying central difference formula given that f (25) =0.2707, f (30) =0.3027, f (35) =0.3386, f (40) =0.3794. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) For the method $f'(x) = \frac{1}{6}[2f(x_1) 3f(x_2) + 6f(x_3) f(x_4)] + TE + RE$ determine the optimum value of H , using the criteria |RE| = |TE|, where TE and RE are respectively the truncation error and round error. [7M]
 - (b) Find the jacobian matrix for the system of equations [7M] $f_1(x, y) = x^2 + y^2 - x = 0$ $f_2(x, y) = x^2 - y^2 - y = 0$ at the point (1,1) using the second order differentiation method.
- 8. (a) A solid of revolution is formed by rotating about X-axis, The area between the X-axis and the lines x=0 and x=1 is a curve through the points with the following coordinates shown in Table 7.
 [7M]

Tal	bl	e	7

x	0	2.5	5.0	7.5	10.0	12.5	15.0
у	5	5.5	6.0	6.75	6.25	5.5	4.0

Estimate the volume of the solid so generated.

(b) Determine a,b and c such that the formula $\int_0^h f(x)dx = h\{af(0) + bf(\frac{h}{3}) + cf(h)\}$ is exact for polynomial of as high order as possible. [7M]

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Using Euler's method solve for y at x=2 from $y' = 3x^2 + 1$, y(1) = 2 taking h=0.25 [7M]
 - (b) Apply the fourth order Runge Kutta method to find y at x=1.2 from $y' = x^2 + y^2$, y(1) = 1.5 taking h=0.1 [7M]
- 10. (a) Using shooting method solve the boundary value problem u'' = u + 1, 0 < x < 1; u(0) = 0,u(1) = e - 1 [7M]
 - (b) given the boundary value problem $x^2y^{11} + xy^1 y = 0$, y(1) = 1, y(2) = 0.5 apply the cubic spline method to determine the value of y (1.5). [7M]