

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

 ${\rm M.Tech~I~Semester~End~Examinations}$ (Supplementary) - May, 2019

Regulation: IARE-R16

COMPUTER ORIENTED NUMERICAL METHODS (STE)

Time: 3 Hours Max Marks: 70

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

UNIT - I

- 1. (a) Explain the procedure of Gauss-seidel method to find the solution of linear equations. [7M]
 - (b) Use Householder's method to convert the matrix $\begin{bmatrix} 4 & 1 & -2 & 2 \\ 1 & 2 & 0 & 1 \\ -2 & 0 & 3 & -2 \\ 2 & 1 & -2 & -1 \end{bmatrix}$ into tridiagonal form.

[7M]

- 2. (a) Write the procedure of LU-Decomposition method to find the simultaneous linear equations.[7M]
 - (b) Solve the following linear system of equations using by Jacobi method rounded to four decimal places. [7M]

$$10x_1 - x_2 + 2x_3 = 6$$

$$-x_1 + 11x_2 - x_3 + 3x_4 = 25$$

$$2x_1 - x_2 + 10x_3 - x_4 = -11$$

$$3x_2 - x_3 + 8x_4 = 15$$

UNIT - II

3. (a) A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a $15'' \times 10''$ rectangular plate. The centers of the holes in the plate describe the path the arm needs to take, and the hole centers are located on a Cartesian coordinate system (with the origin at the bottom left corner of the plate) given by the specifications in Table 1. [7M]

Table 1

x(in.)	2.00	4.25	5.25	7.81	9.20	10.60
y(in.)	7.2	7.1	6.0	5.0	3.5	5.0

Find the path traversed through the six points using a fifth order Lagrange polynomial.

(b) Using Newton divided differences, construct the interpolating polynomial for the data set given below in Table 2 [7M]

Table 2

i	1	2	3	4	5
x	0	5	7	8	10
У	0	2	-1	-2	20

4. (a) Given the following values in Table 3 of f(x) and f'(x) estimate the values of f(-0.5) using the Hermite interpolation [7M]

Table 3

X	f(x)	f'(x)
-1	1	-5
1	3	7

(b) For linear interpolation, in the case of equi spaced tabular data, shows that the error does not exceed 1/8 of the second deference. [7M]

UNIT - III

5. (a) A rod is rotating in a plane. The Table 4 below gives the angle θ (in radians) through which the rod has turned for various values of the time t (in seconds). [7M]

Table 4

t	0	0.2	0.4	0.6	0.8	1.0	1.2
θ	0	0.12	0.49	1.12	2.02	3.20	4.67

Calculate the angular velocity when t=0.6.

(b) Compute f'(4) from the following Table 5 using appropriate interpolating polynomial [7M]

Table 5

X	1	2	4	8	10
f(x)	0	1	5	21	27

6. (a) Using the formula $f'(x) = \frac{f(x+h) - f(x-h)}{2h}$ and Richardson extrapolation find f'(3) from the values in Table 6. [7M]

Table 6

X	-1	1	2	3	4	5	7
f(x)	1	1	16	81	256	625	2401

(b) Find f (32) by applying central difference formula given that f (25) =0.2707, f (30) =0.3027, f (35) =0.3386, f (40) =0.3794. [7M]

UNIT - IV

- 7. (a) For the method $f'(x) = \frac{1}{6}[2f(x_1) 3f(x_2) + 6f(x_3) f(x_4)] + TE + RE$ determine the optimum value of H , using the criteria |RE| = |TE|, where TE and RE are respectively the truncation error and round error.
 - (b) Estimate the values of $\frac{\delta f}{\delta x}$ at (0.2, 0.1), $\frac{\delta f}{\delta y}$ at (0.2, 0.2) using first order formula and $\frac{\partial^2 f}{\partial x \partial y}$ at (0.2, 0.2) using second order formula from the following Table 7. [7M]

Table 7

$x \rightarrow_{/y \downarrow}$	0.1	0.2	0.3
0.1	2.02	2.0351	2.0403
0.2	2.0351	2.0801	2.1153
0.3	2.0403	2.1153	2.1803

8. (a) A solid of revolution is formed by rotating about X-axis, The area between the X-axis and the lines x=0 and x=1 is a curve through the points with the following coordinates shown in Table 8. [7M]

Table 8

X	0	2.5	5.0	7.5	10.0	12.5	15.0
у	5	5.5	6.0	6.75	6.25	5.5	4.0

Estimate the volume of the solid so generated.

(b) Determine a,b and c such that the formula $\int_0^h f(x)dx = h\{af(0) + bf(\frac{h}{3}) + cf(h)\}$ is exact for polynomial of as high order as possible. [7M]

$\mathbf{UNIT} - \mathbf{V}$

9. (a) Explain the procedure of fourth order Range-Kutta method to estimate the linear equations.

[7M]

- (b) Using Euler's method solve for y at x=2 from $y' = 3x^2 + 1$, y(1) = 2 taking h=0.25 [7M]
- 10. (a) Using shooting method solve the boundary value problem u'' = u + 1, 0 < x < 1; u(0) = 0, u(1) = e 1 [7M]
 - (b) given the boundary value problem $x^2y^{11} + xy^1 y = 0$, y(1) = 1, y(2) = 0.5 apply the cubic spline method to determine the value of y (1.5). [7M]