Hall Ticket No	Question Paper Code: BST004				
INSTITUTE OF AERONAUTICAL EN	IGINEERING				
E (Autonomous)					
M.Tech II Semester End Examinations (Supplementar	y) - January, 2018				
Regulation: IARE–R16					
STRUCTURAL DYNAMICS					
(Structural Engineering)					
Time: 3 Hours	Max Marks: 70				

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

1.	(a)	Obtain the response in terms of displacement for a SDOF system subjected to Undamped vibration.	forced [7M]
	(b)	Explain i. Vectorial representation simple harmonic motion. ii. Oscillatory motion	[7M]
2.	(a)	What are the types of dynamic loads? What are the uncertainties of dynamic analysis?	[7M]
	(b)	Define logarthmic decrement and obtain the expression for logarithmic decrement.	[7M]
		$\mathbf{UNIT} - \mathbf{II}$	
3.	(a)	Obtain the equation of motion using D Alembert's principle.	[7M]
	(b)	Obtain the expression for dynamic magnification factor for an under damped SDOF subjected to harmonic load $F(t) = F_0 Sin\omega t$.	$_{\rm [7M]}$
4.	(a)	Explain Duhamel integral method and write the expressions for displacement for damp undamped condition using Duhamel integral.	ed and [7M]

(b) Explain the necessity of mathematical modeling in structural dynamics and mention the objectives of dynamic analysis. [7M]

$\mathbf{UNIT}-\mathbf{III}$

5.	(a) Differentiate with an example coupled and uncoupled equation of motion.	[7M]
	(b) Derive the expression for orthogonality relationship between normal modes.	[7M]

- 6. (a) Explain the concept of mathematical modeling of a multi degree of freedom system. [7M]
 - (b) For the Figure 1, write the equation of motion and determine the natural frequencies and mode shapes. [7M]

Figure 1

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Explain the mode shapes of simple beams with different ends. [7M]
 - (b) Analyze the undamped free vibration of beams in flexure. [7M]
- 8. (a) Derive the natural frequency and mode shape for simple supported beam. [7M]
 - (b) For the multi storey building shown in Figure 2, obtain the natural frequencies and mode shapes using Stodolla's method. $M=10 \times 10^3 kgs$ and $K=50 \times 10^6$ N/m. [7M]

Figure 2

$\mathbf{UNIT}-\mathbf{V}$

9.	(a)	Explain the concept of excitation by rigid base translation for earthquake analysis.	[7M]
	(b)	Define transmissibility and derive the expression for it.	[7M]
10.	(a)	Explain the lumped mass approach in MDOF systems.	[7M]
	(b)	Explain the procedure to find the lateral forces and storey shears in multi-storey	building for
		dynamic analysis.	[7M]

 $-\circ\circ\bigcirc\circ\circ-$