Hall Ticket No		Question Paper Code: BST004				
INSTITUTE OF AERONAUTICAL ENGINEERING						
(Autonomous)						
⁷ ² ³ ² M.Tech II Semester End Examinations (Regular/Supplementary) - July, 2018						
Regulation: IARE–R16						
STRUCTURAL DYNAMICS						
	(

Time: 3 Hours

(STE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- (a) Explain clearly the rectilinear or longitudinal vibration, lateral or transverse vibrations and torsional vibrations. [7M]
 (b) Define the following terms: undamped, damped, free and forced vibrations; resonance; phase difference; periodic motion; time period; amplitude and degrees of freedom. [7M]
 (c) Derive the number have been hormonic force on a hormonic metion of the same force on a force of the same force of the same
- 2. (a) Derive the work done by a harmonic force on a harmonic motion of the same frequency. [7M]
 - (b) A harmonic motion is given by $x(t) = 10 \sin(30t + \pi/3)$ mm, where 't' is in seconds and phase angle in radians. Determine frequency and period of motion, and maximum displacement, velocity and acceleration. [7M]

$\mathbf{UNIT}-\mathbf{II}$

- 3. (a) Derive the response of SDOF for damped free vibration case. [7M]
 - (b) Discuss fundamentals of dynamic analysis with suitable simple examples. [7M]
- 4. (a) An undamped SDOF system is subjected to a ramp impulse as shown in Figure 1. Find the stead state response in the forced and free vibration states using Duhamel integral. [7M]

Figure 1

(b) Formulate the equation of motion of a simple one storey shear building whose mass is lumped at the floor. [7M]

$\mathbf{UNIT}-\mathbf{III}$

5. (a) Derive the response to two degree freedom system shown in figure. Give the expression for natural frequency and mode shape. [7M]

Figure 2

- (b) Describe two examples with neat sketches of the two degree of freedom systems. [7M]
- 6. (a) Determine the natural frequencies and mode shapes of the 2 DOF systems shown in fig. and verify the orthogonality of modes. The beams in each floor are assumed to be rigid. [7M]

Figure 3

(b) Formulate the equation of motion of a simple two storey shear building whose masses are lumped at the floors.

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a) Explain Stodola method to determine the fundamental frequency of the system.	[7M]
	(b) Explain holzer method and basic procedure in the dynamics of a system.	[7M]
8.	(a) Derive the natural frequency and mode shape for simply supported beam.	[7M]
	(b) Derive governing differential equation of motion in continuous systems.	[7M]

$\mathbf{UNIT} - \mathbf{V}$

9.	(a) Define Transmissibility and derive the expression for it.	[7M]	
	(b) Enumerate the basic aspects of seismic design with a neat sketch, explain the	e strategy of earth-	
	quake resistant design.	[7M]	
10	(a) Explain the procedure to find the lateral forces and storey shears in multi-	storey building for	

10. (a) Explain the procedure to find the lateral forces and storey shears in multi-storey building for dynamic analysis.

[7M]

(b) Explain the Indian Standard code method of analysis for obtaining response of multi storied reinforced frame buildings. [7M]

$$-\circ\circ\bigcirc\circ\circ-$$