Hall Ticket No	Question Paper Code: BST005						
INSTITUTE OF AERONAUTICAL ENGINEERING							
(Autonomous)							
⁷ / _{20 FOR 1} ⁸ M.Tech II Semester End Examinations (Supplementary) - January, 2018							
Regulation: IARE–R16							
FINITE ELEMENT METHOD)						
(Structural Engineering)							

Time: 3 Hours

Max Marks: 70

[7M]

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

- (a) Outline the steps involved in finite element analysis for solving a complex problem. [7M]
 (b) Applying Rayleigh Ritz method, develop an expression for maximum deflection in a fixed beam subjected to a central concentrated load using a polynomial with four terms. [7M]
- 2. (a) Discuss the merits and demerits of finite element analysis
 - (b) Obtain an expression for Euler's critical for a column with one end fixed and other end hinged using Rayleigh Ritz method adopting a polynomial of five terms. [7M]

$\mathbf{UNIT}-\mathbf{II}$

- 3. (a) Explain the term 'geometric isotropy / geometric Invariance'. Why polynomial shape functions should satisfy these requirement? How do you check a polynomial for this requirement? [7M]
 - (b) Obtain an expression for strain displacement matrix for a rectangular element. Assuming plane stress condition with displacement matrix as [0, 0, 0.051, 0.076, 0.0152, 0.081, 0, 0] T, determine the stresses at the centre of the rectangle shown in Figure 1. [7M]

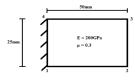


Figure 1

- 4. (a) Illustrate the application of internal nodes and higher order elements with examples. [7M]
 - (b) Discuss the convergence requirements to be satisfied by an element. [7M]

$\mathbf{UNIT} - \mathbf{III}$

5. (a) Derive the strain displacement matrix of a linear triangular element using isoparametric formulation. Determine the joint displacements for the bracket shown in Figure 2. [7M]

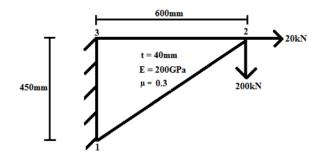


Figure 2

(b) Using Lagrange polynomial find shape functions for Two noded bar element. Sketch the shape function. [7M]

6.	(a)	Develop the strain disp	placement r	natrix o	f an	axisymmetry	solid	using	triangular	element	with
		isoparametric formulat	tion.								[7M]
	(b)	Derive Jacobian matrix	x four node	d isopara	amet	ric element					[7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a) Discuss the different aspects involved in developing plate bending elements.	[7M]
	(b) What are the assumptions in thin plate theory? Write the relation between for	rces and stresses

- action on a thin plate.
- 8. (a) Discuss the development of various types of shell elements with sketches. [7M]
 (b) Describe briefly about mindlin's theory of plates? List out the assumptions. [7M]

$\mathbf{UNIT} - \mathbf{V}$

9.	(a) Explain the different types of non-linearities encountered in structural analysis.	$[\mathbf{7M}]$
	(b) Explain Newton – Raphson method in nonlinear analysis.	[7M]
10.	(a) Discuss the difficulties involved in modelling nonlinear problems.	[7M]
	(b) Explain incremental procedure to handle geometric non-linear problems.	[7M]

 $-\circ\circ\bigcirc\circ\circ-$